首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
大肠杆菌以其明显的优势成为表达重组蛋白常用的系统,但是大肠杆菌本身不具备细胞内形成二硫键的氧化条件和分子机制,而且高水平表达时常容易聚集形成包涵体,限制了其使用,改善这一缺点的重要方法是通过信号肽实现蛋白质的分泌表达。信号肽一般存在于分泌蛋白的氨基端,能够引导蛋白质通过大肠杆菌中的Sec或/和Tat系统分泌至周质空间。简要概述了大肠杆菌中两种跨膜分泌系统和信号肽的结构,并结合近年来常用6种信号肽的研究与应用进展,阐述了信号肽在使用中存在的问题及改进措施。旨在为研究者合理选择信号肽、优化重组蛋白的表达提供更多可用的信息与策略。  相似文献   

2.
[目的]筛选在大肠杆菌内对抗TNFα抗体Fab片段转运效率最高的信号肽,并优化Fab片段表达的培养条件。[方法]通过对抗TNFα抗体Fab片段连接不同的信号肽序列获得了5种分泌载体并完成了重组蛋白的表达,通过Westen Blot检测蛋白表达情况并筛选出最适信号肽,通过正交试验优化了培养条件。[结果]对周质重组蛋白抗TNFα抗体Fab片段转运效率最高的信号肽为麦芽糖结合蛋白MalE,周质重组蛋白的最佳诱导条件为温度29℃、时间9 h、p H7. 5、IPTG浓度2. 0 mmol/L。[结论]通过信号肽筛选和培养条件优化,促进了菌体对周质重组蛋白抗TNFα抗体Fab片段的表达,其中最佳信号肽MalE对目的蛋白的相对表达量为1. 3。  相似文献   

3.
大肠杆菌的分泌蛋白定位于内膜、外膜、周质空间和胞外环境,它们在N端或C端带有一定的结构包含着分泌信号,这两类分泌蛋白在各自特定的一组蛋白因子的协助下跨越内膜,再通过目前尚不清楚的方式实现其最终定位.N端带有信号肽的分子在跨越内膜时得到Sec家族蛋白因子协助,信号肽在跨膜过程中可能被切除,该过程由ATP和电化学势提供能量.C端带分泌信号的分子主要受到Hly家族分子协助,一次穿过内膜和外膜而不经过周质空间.  相似文献   

4.
大肠杆菌周质和外膜蛋白的定位   总被引:1,自引:0,他引:1  
大肠杆菌周质和外膜蛋白发挥功能必须首先到达其特定亚细胞分区.大肠杆菌通过一系列与蛋白质分泌有关的蛋白(Sec蛋白)将周质和外膜蛋白转运至内膜.在切除了信号肽后,与周质蛋白的定位不同的是,外膜蛋白的最终定位还需要其他因子的协助.外膜蛋白的定位近来认为是以周质作为中介的.  相似文献   

5.
探讨了荧光蛋白作为报告蛋白用于蛋白质转运系统研究的可行性 ,结果表明海葵红色荧光蛋白聚集在细胞质内 ,不能转运至周质空间。而水母绿色荧光蛋白在Tat信号肽和Tat转运酶的共同作用下 ,以折叠形式转运至周质空间。通过荧光定量分析表明信号肽保守序列中的双精氨酸是保证绿色荧光蛋白转运及转运效率所必需的 ,且第二个精氨酸比第一个精氨酸更为重要。同时 ,揭示了Tat信号肽需要一定的高级结构才能行使功能 ;Tat信号肽不仅引导蛋白质的转运 ,而且也参与蛋白质的折叠。因此 ,绿色荧光蛋白是非常理想的报告蛋白 ,可用于研究Tat系统 ,但是海葵红色荧光蛋白易于聚集而不适合于此目的。  相似文献   

6.
大肠杆菌是表达重组蛋白的常见宿主之一。重组蛋白分泌到周质空间或胞外培养基中较之在胞内以包含体形式表达有许多优势。主要讨论大肠杆菌Ⅰ、Ⅱ型分泌机制,并总结近年来在提高重组蛋白分泌表达的策略方面取得的进展。  相似文献   

7.
MMP-9信号肽高效诱导PEX重组蛋白在COS7细胞中分泌表达   总被引:2,自引:1,他引:1  
为了便于收集和纯化, 重组蛋白常需要引导至真核细胞外。蛋白能否分泌主要取决于其是否含有信号肽, 由于不同信号肽诱导蛋白分泌的效率不同,高效信号肽的筛选已成为生物工程领域提高重组蛋白产量的重要策略之一。为了筛选诱导MMP-2 C末端PEX在COS7细胞中高效分泌表达的信号肽,在PEX的N末端分别融合大鼠生长激素(rGH)、小鼠IgG κ链和人基质金属蛋白酶-9(matrix metalloproteinase 9, MMP-9)的信号肽并比较三种信号肽引导PEX分泌表达的效率。Western免疫印迹和ELISA蛋白定量检测表明MMP-9的信号肽引导PEX蛋白分泌的效率约为其它两种信号肽的两倍。利用Ni-NTA亲和柱对细胞培养基中的PEX进行纯化,蛋白产量约为1mg/L,纯化的PEX重组蛋白具有抑制鸡尿囊膜(chorioallantoic membrane,CAM)血管发生的作用。以上结果提示MMP-9的信号肽有效诱导具有生物活性的PEX重组蛋白在COS7细胞中分泌表达。  相似文献   

8.
为探索哺乳动物非经典分泌信号肽在毕赤酵母表达系统中引导重组蛋白分泌的作用,本研究将一段来源于小鼠同源异型框蛋白(En2)的分泌信号序列(SS)融合至EGFP蛋白的N端,在毕赤酵母中表达。实验结果显示SS信号肽能通过一种不同于经典的内质网-高尔基体分泌通路的方式将EGFP蛋白分泌至细胞膜表面,与α交配因子前导肽相比,显著降低了细胞的内质网压力。本研究提示哺乳动物非经典分泌信号肽可作为递送重组蛋白至酵母膜表面的一项工具。  相似文献   

9.
研究利用Red同源重组技术对常用大肠杆菌表达宿主菌BL21(DE3)进行改良, 构建破菌时可自动降解宿主核酸的大肠杆菌表达宿主菌, 该菌株可望有助于解决因破菌时宿主菌染色体核酸释放给后续纯化重组蛋白工作带来的困难。将N端连有OmpA的信号肽的S. aureus nucleaseB(nucB)表达框整合至E. coli BL21(DE3)的lpxM位点, 改造后菌株(称为BLN)经诱导能表达nucB、并分泌至周质空间, 这样可使宿主核酸免受该酶“毒性”影响, 菌体裂解后, nucB释放,能自动降解宿主核酸。BLN菌体生长状态以及表达外源重组蛋白的能力与出发菌基本一致。  相似文献   

10.
分子伴侣过量表达对蛋白质分泌及可溶性的影响   总被引:11,自引:3,他引:8  
 通过过量表达大肠杆菌分子伴侣 Sec B和 Gro EL,研究了它们对靶蛋白的分泌及可溶性的影响 .在过量表达 Sec B的宿主菌中 ,周质空间分泌蛋白总量较对照组提高了约 71 % ,GL- 7- ACA酰化酶在周质空间酶的活力较对照组提高了约 1 .5倍 ,碱性磷酸酯酶在周质空间酶的活力较对照组提高了约 54% ;在过量表达 Gro EL的宿主菌中 ,周质分泌蛋白总量较对照组提高了约 52 % ,青霉素 G酰化酶在周质空间酶的活力较对照组提高了约 76% ,鲑鱼降钙素六聚体的可溶性组分的比例由原来的 45%增加到约 90 % ,而 MS2 -人白介素 - 3融合蛋白的包涵体有约 1 5%转变为可溶性组份 .上述结果表明 ,分子伴侣 Sec B和 Gro EL的过量表达促进了靶蛋白的分泌 ,Gro EL增加了靶蛋白的可溶性  相似文献   

11.
Organophosphorus hydrolase (OPH) from Flavobacterium species is a membrane‐associated homodimeric metalloenzyme and has its own signal peptide in its N‐terminus. We found that OPH was translocated into the periplasmic space when the original signal peptide‐containing OPH was expressed in recombinant Escherichia coli even though its translocation efficiency was relatively low. To investigate the usability of this OPH signal peptide for periplasmic expression of heterologous proteins in an E. coli system, we employed green fluorescent protein (GFP) as a cytoplasmic folding reporter and alkaline phosphatase (ALP) as a periplasmic folding reporter. We found that the OPH signal peptide was able to use both twin‐arginine translocation (Tat) and general secretory (Sec) machineries by switching translocation pathways according to the nature of target proteins in E. coli. These results might be due to the lack of Sec‐avoidance sequence in the c‐region and a moderate hydrophobicity of the OPH signal peptide. Interestingly, the OPH signal peptide considerably enhanced the translocation efficiencies for both GFP and ALP compared with commonly used TorA and PelB signal peptides that have Tat and Sec pathway dependences, respectively. Therefore, this OPH signal peptide could be successfully used in recombinant E. coli system for efficient periplasmic production of target protein regardless of the subcellular localization where functional folding of the protein occurs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:848–854, 2016  相似文献   

12.
New secretion vectors containing synthetic signal peptides were constructed to study the periplasmic translocation of green fluorescent protein (GFP) in Escherichia coli. These constructs encode synthetic signal peptides spA and spD fused to the amino terminal end of GFP, and expressed from T7/lac promoter in the BL21DE3 strain by induction with IPTG. The recombinant protein was detected in both the cytoplasmic and periplasmic fractions. Fluorescence analysis revealed that recombinant proteins with signal peptides were not fluorescent, indicating translocation to periplasmic space. In contrast, recombinant proteins without signal peptide were fluorescent. These results indicate that the expressed recombinant proteins were translocated into the periplasm. Therefore, the synthetic signal peptides derived from signal peptides of Bacillus sp. could efficiently secrete the heterologous proteins to the periplasmic space of E. coli.  相似文献   

13.
l-Asparaginase II signal peptide was used for the secretion of recombinant cyclodextrin glucanotransferase (CGTase) into the periplasmic space of E. coli. Despite its predominant localisation in the periplasm, CGTase activity was also detected in the extracellular medium, followed by cell lysis. Five mutant signal peptides were constructed to improve the periplasmic levels of CGTase. N1R3 is a mutated signal peptide with the number of positively charged amino acid residues in the n-region increased to a net charge of +5. This mutant peptide produced a 1.7-fold enhancement of CGTase activity in the periplasm and significantly decreased cell lysis to 7.8% of the wild-type level. The formation of intracellular inclusion bodies was also reduced when this mutated signal peptide was used as judged by SDS–PAGE. Therefore, these results provide evidence of a cost-effective means of expression of recombinant proteins in E. coli.  相似文献   

14.
Nattokinase producing bacterium, B. subtilis YF38, was isolated from douchi, using the fibrin plate method. The gene encoding this enzyme was cloned by polymerase chain reaction (PCR). Cytoplasmic expression of this enzyme in E. coli resulted in inactive inclusion bodies. But with the help of two different signal peptides, the native signal peptide of nattokinase and the signal peptide of PelB, active nattokinase was successfully expressed in E. coli with periplasmic secretion, and the nattokinase in culture medium displayed high fibrinolytic activity. The fibrinolytic activity of the expressed enzyme in the culture was determined to reach 260 urokinase units per micro-liter when the recombinant strain was induced by 0.7 mmol l−1 isopropyl-β-D- thiogalactopyranoside (IPTG) at 20°C for 20 h, resulting 49.3 mg active enzyme per liter culture. The characteristic of this recombinant nattokinase is comparable to the native nattokinase from B. subtilis YF38. Secretory expression of nattokinase in E. coli would facilitate the development of this enzyme into a therapeutic product for the control and prevention of thrombosis diseases.  相似文献   

15.
Recombinant proteins can be targeted to the Escherichia coli periplasm by fusing them to signal peptides. The popular pET vectors facilitate fusion of target proteins to the PelB signal. A systematic comparison of the PelB signal with native E. coli signal peptides for recombinant protein expression and periplasmic localization is not reported. We chose the Bacillus stearothermophilus maltogenic amylase (MA), an industrial enzyme widely used in the baking and brewing industry, as a model protein and analyzed the competence of seven, codon-optimized, E. coli signal sequences to translocate MA to the E. coli periplasm compared to PelB. MA fusions to three of the signals facilitated enhanced periplasmic localization of MA compared to the PelB fusion. Interestingly, these three fusions showed greatly improved MA yields and between 18- and 50-fold improved amylase activities compared to the PelB fusion. Previously, non-optimal codon usage in native E. coli signal peptide sequences has been reported to be important for protein stability and activity. Our results suggest that E. coli signal peptides with optimal codon usage could also be beneficial for heterologous protein secretion to the periplasm. Moreover, such fusions could even enhance activity rather than diminish it. This effect, to our knowledge has not been previously documented. In addition, the seven vector platform reported here could also be used as a screen to identify the best signal peptide partner for other recombinant targets of interest.  相似文献   

16.
Cytoplasmic expression of complex eukaryotic proteins inEscherichia coli usually yields inactive protein preparations. In some cases, (part) of the biological activity can be recovered by rather inefficient denaturation-renaturation procedures. Recently, novel concepts have been developed for the expression of fully functional eukaryotic proteins inE. coli. Essential to the success of these procedures is the transport of such proteins across the inner membrane to the periplasmic space, allowing proper folding and the establishment of disulfide bonding. Subsequently, fully functional proteins can be exposed on the surface of filamentous (bacterio)phages, provided a system is employed that consists of a cloning vector (e.g. the phagemid pComb3, Barbas et al., 1991) that generates phage particles in the presence of a helper phage. The main advantage of surface display of recombinant proteins is to facilitate the screening of very large numbers of different molecules by simple selection methods (panning). In addition, periplasmic expression yields relatively large quantities (e.g. 1 mg l–1 of culture) soluble protein. In this review, the principle aspects of this novel expression system based on the phagemid pComb3 will be discussed. Two examples for functional periplasmic expression of human proteins inE. coli will be presented, namely i) the antigen-binding moiety (Fab fragment) of human immunoglobulins (IgGs) and ii) the human plasminogen activator inhibitor 1, an essential regulator of the plasminogen activation system. Finally, perspectives for the application of this system to express mutant proteins, fragments of proteins and peptides are indicated.Abbreviations ApR ampicillin resistance - cfu colony forming unit(s) - cpIII gene III-encoded coat protein of M13 - cpVIII gene VIII-encoded coat protein of M13 - ER endoplasmic reticulum - Fab fragment of Ig containing light chain, variable region and first constant region of heavy chain - Fd variable region and first constant region of the heavy chain - Fv fragment containing variable regions of heavy and light chain - Ig immunoglobulin - KmR kanamycin resistance - kb kilobase or 1000 basepairs - PAI-1 plasminogen activator inhibitor 1 - t-PA tissue-type plasminogen activator - u-PA urokinase-type plasminogen activator  相似文献   

17.
Hen egg white lysozyme was expressed as a protein fusion with the OmpA signal sequence and an octapeptide linker in Escherichia coli. The expression yielded soluble and enzymatically active lysozyme. Lysozyme activity was detected in the periplasmic space, in the cytosol and in the insoluble cytosolic fraction of E. coli. The results indicate that the environmental conditions in both the cytosol and the periplasmic space of E. coli were sufficient for correct protein folding and disulphide bond formation of eukaryotic recombinant lysozyme. However, the expression of active enzyme in E. coli consequently led to bacterial cell lysis due to hydrolysis of the peptidoglucan. Correspondence to: B. Fischer  相似文献   

18.
Enterotoxin A containing various leader sequences have been obtained by site-driven mutagenesis. Some of them were capable of providing the translocation of recombinant SEA to E. coli periplasmic space. Structure of C-region of the signal peptide is essential for intracellular protein location. Substitution of a more common to E. coli proproteins Ala-Ser-Ala for the authentic sequence of Val-Asn-Gly is the most important in recognition by signal peptidase type I.  相似文献   

19.

Background  

Many protocols for recombinant production of peptides and proteins include secretion into the periplasmic space of Escherichia coli, as they may not properly fold in the cytoplasm. If a signal peptide is not sufficient for translocation, a larger secretion moiety can instead be fused to the gene of interest. However, due to the covalent linkage of the proteins, a protease recognition site needs to be introduced in between, altering the N-terminus of the product. In the current study, we combined the ubiquitin fusion technology, which allows production of authentic peptides and proteins, with secretion by the perpiplasmic protease inhibitor ecotin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号