首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nattokinase has been reported as an oral health product for the prevention of atherosclerosis. We developed a novel strategy to express a nattokinase from Bacillus subtilis in a live delivery vehicle, Lactococcus lactis. Promoter P nisZ and signal peptide SPUsp were used for inducible and secretory expression of nattokinase in L. lactis. Western blotting analysis demonstrated that nattokinase was successfully expressed, and about 94% of the enzyme was secreted to the culture. The recombinant nattokinase showed potent fibrinolytic activity, equivalent to 41.7 urokinase units per milliliter culture. Expression and delivery of such a fibrinolytic enzyme in the food-grade vehicle L. lactis would facilitate the widespread application of nattokinase in the control and prevention of thrombosis diseases.  相似文献   

2.
For the heterologous expression of the msp2 gene from the edible mushroom Marasmius scorodonius in Escherichia coli the cDNA encoding the extracellular Msp2 peroxidase was cloned into the pBAD III expression plasmid. Expression of the protein with or without signal peptide was investigated in E. coli strains TOP10 and LMG194. Different PCR products were amplified for expression of the native target protein or a protein with a signal peptide. Omitting the native stop codon and adding six His-residues resulted in a fusion protein amenable to immune detection and purification by immobilised metal affinity chromatography. In E. coli the recombinant protein was produced in high yield as insoluble inclusion bodies. The influence of different parameters on MsP2 refolding was investigated. Active enzyme was obtained by glutathione-mediated oxidation in a medium containing urea, Ca2+, and hemin.  相似文献   

3.
A gene encoding the xylanase from Bacillus subtilis strain R5 containing the native signal sequence was cloned and expressed in Escherichia coli. The heterologous expression of the gene resulted in the production of the recombinant protein in the cytoplasm as well as its secretion into the culture medium. The xylanase activity in the culture medium increased with time after induction up to 90% of the total activity in 14 h. Molecular mass and N-terminal amino acid sequence determinations of the purified recombinant xylanase revealed that the native signal peptide was cleaved off by E. coli signal peptidases between Ala28 and Ala29.  相似文献   

4.
5.
The sweet protein monellin gene was expressed in Bacillus subtilis under the control of the Bacillus subtilis sacB promoter and signal peptide sequence. A 294-bp DNA fragment, coding for sweet protein monellin, was ligated into the Escherichia coli/B. subtilis shuttle vector pHPC, producing pHPMS, which was subsequently transformed into B. subtilis QB1098, DB104, and DB403. The peptide efficiently directed the secretion of monellin from the recombinant B. subtilis cells. A maximum yield of monellin of 0.29 g protein l−1 was obtained from the supernatant of B. subtilis DB403 harboring pHPMS. SDS-PAGE confirmed the purity of the recombinant product.  相似文献   

6.
Two cDNA fragments (lrF1 and lrF2) representing a fibrinolytic enzyme gene of F-III-2 (GenBank AB045719), without and with signal peptide coding sequence, were cloned from earthworm Lumbricus rubellus. The two fragments were inserted into bacterial expression vector pET28a (+), respectively. Subsequent expression showed that both lrF1 and lrF2 proteins were produced as an inclusion body form in E. coli BL21 (DE3) pLysE. After protein refolding and purification, the fusion lrF1 and its derivative without poly histidine tags at the N-terminus showed fibrinolytic activity on fibrin plates with relative activity of 134.3 U/mg protein and 139.7 U/mg protein, respectively, whereas the fusion lrF2 and its derivative without the tags at the N-terminus, had no fibrinolytic activity. The results indicated that the E. coli expression system could not recognize the endogenous signal peptide of F-III-2, and the effect of the histidine tags at the N-terminus on the fibrinolytic activity of the expressed protein was insignificant.  相似文献   

7.
The gene for phospholipase D (PLD) of Streptomyces sp. YU100 was cloned from λ phage library and hetero-logously expressed in Escherichia coli. Using an amplified gene fragment based on the consensus sequences of streptomycetes PLDs, λ phage library of Streptomyces sp. YU100 chromosomal DNA was screened. The sequencing result of BamHI-digested 3.8 kb fragment in a positive phage clone revealed the presence of an open reading frame of a full sequence of PLD gene encoding a 540-amino acid protein including 33-amino acid signal peptide. The deduced amino acid sequence showed a high homology with other Streptomyces PLDs, having the highly conserved ‘HKD’ motifs. The PLD gene excluding signal peptide sequence was amplified and subcloned into a pET-32b(+) expression vector in E. coli BL21(DE3). The recombinant PLD was purified by nickel affinity chromatography and compared the enzyme activity with wild-type PLD. The results imply that the recombinant PLD produced by E. coli had the nearly same enzyme activity as PLD from Streptomyces sp. YU100.  相似文献   

8.
The srfA operon is required for the nonribosomal biosynthesis of the cyclic lipopeptide, surfactin. The srfA operon is composed of the four genes, srfAA, srfAB, srfAC, and srfAD, encoding the surfactin synthetase subunits, plus the sfp gene that encodes phosphopantetheinyl transferase. In the present study, 32 kb of the srfA operon was amplified from Bacillus subtilis C9 using a long and accurate PCR (LA-PCR), and ligated into a pIndigoBAC536 vector. The ligated plasmid was then transformed into Escherichia coli DH10B. The transformant ET2 showed positive signals to all the probes for each open reading frame (ORF) region of the srfA operon in southern hybridization, and a reduced surface tension in a culture broth. Even though the surface-active compound extracted from the E. coli transformant exhibited a different R f value of 0.52 from B. subtilis C9 or authentic surfactin (R f = 0.63) in a thin layer chromatography (TLC) analysis, the transformant exhibited a much higher surface-tension-reducing activity than the wild-type strain E. coli DH10B. Thus, it would appear that an intermediate metabolite of surfactin was expressed in the E. coli transformant harboring the srfA operon.  相似文献   

9.
A two-parameter statistical model was used to predict the solubility of 96 putative virulence-associated proteins of Flavobacterium psychrophilum (CSF259-93) upon over expression in Escherichia coli. This analysis indicated that 88.5% of the F. psychrophilum proteins would be expressed as insoluble aggregates (inclusion bodies). These solubility predictions were verified experimentally by colony filtration blot for six different F. psychrophilum proteins. A comprehensive analysis of codon usage identified over a dozen codons that are used frequently in F. psychrophilum, but that are rarely used in E. coli. Expression of F. psychrophilum proteins in E. coli was often associated with production of minor molecular weight products, presumably because of the codon usage bias between these two organisms. Expression of recombinant protein in the presence of rare tRNA genes resulted in marginal improvements in the expressed products. Consequently, Vibrio parahaemolyticus was developed as an alternative expression host because its codon usage is similar to F. psychrophilum. A full-length recombinant F. psychrophilum hemolysin was successfully expressed and purified from V. parahaemolyticus in soluble form, whereas this protein was insoluble upon expression in E. coli. We show that V. parahaemolyticus can be used as an alternate heterologous expression system that can remedy challenges associated with expression and production of F. psychrophilum recombinant proteins.  相似文献   

10.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

11.
Bacillus thuringiensis subsp. kurstaki BUPM255 secretes a chitobiosidase Chi255 having an expected molecular weight of 70.665 kDa. When the corresponding gene, chi255, was expressed in E. coli, the active form, extracted from the periplasmic fraction of E. coli/pBADchi255, was of about 54 kDa, which suggested that Chi255 was excessively degraded by the action of E. coli proteases. Therefore, in vitro progressive C-terminal Chi255 deleted derivatives were constructed in order to study their stability and their activity in E. coli. Interestingly, when the chitin binding domain (CBD) was deleted from Chi255, an active form (Chi2555Δ5) of expected size of about 60 kDa was extracted from the E. coli periplasmic fraction, without the observation of any proteolytic degradation. Compared to Chi255, Chi255Δ5 exhibited a higher chitinase activity on colloidal chitin. Both of the enzymes exhibit activities at broad pH and temperature ranges with maximal enzyme activities at pH 5 and pH 6 and at temperatures 50°C and 40°C, respectively for Chi255 and Chi255Δ5. Thus, it was concluded that the C-terminal deletion of Chi255 CBD might be a nice tool for avoiding the excessive chitinase degradation, observed in the native chitinase, and for improving its activity.  相似文献   

12.
Bacillus licheniformis (B. licheniformis) CH3-17, an isolate from cheonggukjang, a traditional Korean fermented soyfood, secretes several fibrinolytic enzymes into the culture medium, showing strong fibrinolytic activity. A gene homologous to aprE of Bacillus subtilis (B. subtilis), aprE3-17, was cloned by PCR. DNA sequencing showed that aprE3-17 encodes a prepro-type serine protease consisting of 382 amino acids. The mature enzyme was 27 kDa in size. The aprE3-17 gene was overexpressed in B. subtilis WB600 using pHY300PLK, an Escherichia coli (E. coli)-Bacillus shuttle vector, and the 27 kDa enzyme was purified from the culture supernatant. The optimum pH for activity was 6.0. Purified enzyme quickly degraded the Aα and Bβ chains of fibrinogen but could not degrade the γ-chain.  相似文献   

13.
An efficient strategy for the expression and secretion of extracellular polyhydroxybutyrate depolymerase (PhaZ1) of Paucimonas lemoignei in Escherichia coli was developed by employing the signal peptide of PhaZ1 and a truncated ice nucleation protein anchoring motif (INPNC). Directly synthesized mature form of Phaz1 was present in the cytoplasm of host cells as inclusion bodies, while a construct containing Phaz1 and its own N-terminal signal peptide (PrePhaz1) enabled the secretion of active Phaz1 into the extracellular medium. However, the PrePhaz1 construct was harmful to the host cell and resulted in atypical growth and instability of the plasmid during the cultivation. In contrast, INPNC-Phaz1 and INPNC-PrePhaz1 fusion constructs did not affect growth of host cells. INPNC-Phaz1 was successfully displayed on the cell surface with its fusion form, but did not retain Phaz1 activity. In the case of INPNC-PrePhaz1, the initially synthesized fusion form was separated by precise cleavage of the signal peptide, and active Phaz1 was consequently released into the culture medium. The amount of Phaz1 derived from E. coli (INPNC-PrePhaz1) was almost twice as great as that directly expressed from E. coli (PrePhaz1), and was predominantly (approximately 85%) located in the periplasm when cultivated at 22°C but was efficiently secreted into the extracellular medium when cultivated at 37°C.  相似文献   

14.
Liu Z  Li X  Chi Z  Wang L  Li J  Wang X 《Antonie van Leeuwenhoek》2008,94(2):245-255
The extracellular lipase structural gene was isolated from cDNA of Aureobasidium pullulans HN2-3 by using SMARTTM RACE cDNA amplification kit. The gene had an open reading frame of 1245 bp long encoding a lipase. The coding region of the gene was interrupted by only one intron (55 bp). It encodes 414 amino acid residues of a protein with a putative signal peptide of 26 amino acids. The protein sequence deduced from the extracellular lipase structural gene contained the lipase consensus sequence (G-X-S-X-G) and three conserved putative N-glycosylation sites. According to the phylogenetic tree of the lipases, the lipase from A. pullulans was closely related to that from Aspergillus fumigatus (XP_750543) and Neosartorya fischeri (XP_001257768) and the identities were 50% and 52%, respectively. The mature peptide encoding cDNA was subcloned into pET-24a (+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21(DE3). The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 47 kDa was found. Enzyme activity assay verified the recombinant protein as a lipase. A maximum activity of 0.96 U/mg was obtained from cellular extract of E. coli BL21(DE3) harboring pET-24a(+)LIP1. Optimal pH and temperature of the crude recombinant lipase were 8.0 and 35 °C, respectively and the crude recombinant lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

15.
A fibrinolytic metalloprotease gene from Bacillus subtilis has been cloned in Escheridria coliXL1-Blue and the bacterial expressed enzyme was purified. The nucleotide sequence of the cloned fibrinolytic enzyme gene revealed a single open reading frame of 1023 bp coding for 341 amino acids (M r 37708.21 Da). N-terminal amino acid sequencing of the fibrinolytic enzyme excreted from E. coli host cells revealed that the mature fibrinolytic enzyme consists of 288 amino acids (M r 31391.1 Da). The deduced amino acid sequence showed significant homology with Erwina carotovora neutral metalloprotease and Serratia marcescens minor metalloprotease by 65 and 58% amino acid sequence identity, respectively. The protein showed significant alignments with the conserved domain of catalytic activity and the -helix domain in Bacillus anthracisthermolysis metalloprotease. The biochemical properties of the purified enzyme suggested that the enzyme is a fibrinolytic metalloprotease, which has optimal activity at pH 7.0 and 50 °C.  相似文献   

16.
The full length empA gene encoding Vibrio anguillarum metalloprotease was amplified by PCR and fused to the expression vector pBAD24. The carboxy-terminal 6xHis-tagged recombinant metalloprotein (rEmpA) was expressed from plasmid pBAD-VAP6his in E. coli TOP10 and purified with affinity chromatography using a Ni-NTA column. SDS-PAGE analysis and Western blotting revealed a molecular mass of the mature rEmpA predicted to be 36 kDa. The optimal temperature and pH for the purified rEmpA were 37°C and 8.0, respectively. The enzyme was stable below 30°C and between pH 5.0 and 8.0, respectively. The results show that Ca2+, Na+ and Mg2+ had an activating effect on the enzyme while Zn2+ and Cu2+ acted as inhibitors of the enzyme. The purified rEmpA was characterized as a zinc metalloprotease as it was inhibited by zinc- and metal-specific inhibitors, such as 1,10-phenanthroline, EDTA and EGTA. The results indicate that some characteristics of EmpA from marine V. anguillarum had been modified after expression and processing in the engineered E. coli. The purified rEmpA showed degradation activity towards various kinds of proteins, indicating its potential role in pathogenesis.  相似文献   

17.
The alyPEEC gene encoding alginate lyase from marine bacterium Pseudoalteromonas elyakovii IAM 14594 was subcloned into pBAD24 with arabinose promoter and sequenced, and overexpressed in TOP10 strain of E. coli after arabinose induction. Expression levels of alyPEEC gene in E. coli cells were over 39.6-fold higher than those in P. elyakovii IAM 14594 cells. The molecular mass of purified alginate lyase from the engineered E. coli cells was estimated to be 32.0 kDa. Optimum pH and temperature of the alginate lyase activity were 7.0 and 30 °C, respectively. The enzyme was unstable on heating and in acidic and alkaline solution. The enzyme activity was stimulated by the MgCl2, NaCl, KCl, CaCl2, BaCl2 and MnCl2, but was inhibited by the addition of 1.0 mM of EGTA, EDTA, SDS, ZnSO4, AgNO3, and CoCl2. All the alginate, polyM and polyG could be converted into oligosaccharides with more than tetrasaccharides by the purified recombinant alginate lyase, suggesting that the recombinant alginate lyase produced by the engineered E. coli has highly potential application in seaweed genetics, food and pharmaceutical industries.  相似文献   

18.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Functional expression of lipase from Burkholderia sp. C20 (Lip) in various cellular compartments of Escherichia coli was explored. The poor expression in the cytoplasm of E. coli was improved by several strategies, including coexpression of the cytoplasmic chaperone GroEL/ES, using a mutant E. coli host strain with an oxidative cytoplasm, and protein fusion technology. Fusing Lip with the N-terminal peptide tags of T7PK, DsbA, and DsbC was effective in enhancing the solubility and biological activity. Non-fused Lip or Lip fusions heterologously expressed in the periplasm of E. coli formed insoluble aggregates with a minimum activity. Biologically active and intact Lip was obtained upon the secretion into the extracellular medium using the native signal peptide and the expression performance was further improved by coexpression of the periplasmic chaperon Skp. The extracellular expression was even more effective when Lip was secreted as a Lip–HlyA fusion via the α-hemolysin transporter. Finally, Lip could be functionally displayed on the E. coli cell surface when fused with the carrier EstA.  相似文献   

20.
A pair of bifunctional expression vectors, pBL-WZX and pHY-WZX, for Escherichia coli and Bacillus licheniformis was constructed to express interesting genes in a secretory manner. The vectors contain an expression cassette consisted of the promoter and signal peptide region of B. licheniformis amyL as well as an artificial multiple cloning site and a terminator and utilize kanamycin-resistance and/or tetracycline-resistance for selection in both B. licheniformis and E. coli. Both vectors contain a part of 3′ terminal fragment of B. licheniformis amyL. The 5′-terminal or 3′-terminal fragment of B. licheniformis amyL can cause the integration and amplification of expression cassette in the chromosome of B. licheniformis under a kanamycin-selection pressure. pBL-WZX is an integrational vector while pHY-WZX is free one for B. licheniformis. Both vectors were succeeded in secretory expression of manL in both B. licheniformis and E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号