首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One way that climate change will impact animal distributions is by altering habitat suitability and habitat fragmentation. Understanding the impacts of climate change on currently threatened species is of immediate importance because complex conservation planning will be required. Here, we mapped changes to the distribution, suitability, and fragmentation of giant panda habitat under climate change and quantified the direction and elevation of habitat shift and fragmentation patterns. These data were used to develop a series of new conservation strategies for the giant panda. Qinling Mountains, Shaanxi, China. Data from the most recent giant panda census, habitat factors, anthropogenic disturbance, climate variables, and climate predictions for the year 2050 (averaged across four general circulation models) were used to project giant panda habitat in Maxent. Differences in habitat patches were compared between now and 2050. While climate change will cause a 9.1% increase in suitable habitat and 9% reduction in subsuitable habitat by 2050, no significant net variation in the proportion of suitable and subsuitable habitat was found. However, a distinct climate change‐induced habitat shift of 11 km eastward by 2050 is predicted firstly. Climate change will reduce the fragmentation of suitable habitat at high elevations and exacerbate the fragmentation of subsuitable habitat below 1,900 m above sea level. Reduced fragmentation at higher elevations and worsening fragmentation at lower elevations have the potential to cause overcrowding of giant pandas at higher altitudes, further exacerbating habitat shortage in the central Qinling Mountains. The habitat shift to the east due to climate change may provide new areas for giant pandas but poses severe challenges for future conservation.  相似文献   

2.
Compared to conventional approaches, the integration of population size analysis with habitat suitability assessment on a large scale can provide more evidence to explain the mechanisms of habitat isolation and fragmentation, and thus make regional conservation plans. In this paper, we analyzed the habitat suitability for giant pandas in the Minshan Mountains, China, using the ecological-niche factor analysis (ENFA) method, and then evaluated the current conservation status of this endangered species. The results showed that (1) giant pandas were distributed in a narrow altitudinal range in which vegetation cover was dominated by coniferous forest, mixed coniferous and deciduous broadleaf forest, and deciduous broadleaf forest with scattered bamboo understory, and (2) roads and human settlements had strong negative effects on the panda habitat selection. According to habitat analysis, the total habitat area of giant panda in the Minshan Mountains was 953,173 ha, which was fragmented into 12 habitat units by major roads, rivers, and human settlements. The habitat of the mid-Minshan was less fragmentized, but was seriously fragmented in the north. The panda population size estimation showed that 676 individuals inhabited the study area, and 94.53% of them were in the mid-Minshan, but small panda populations less than 30 individuals inhabited the isolated and fragmented habitat patches in the north. The nature reserves in the Minshan Mountains have formed three conservation groups, which covered 41.26% of panda habitat and protected 70.71% of panda population of the study area, but there still exists two conservation gaps, and the connectivity among these reserves is still weak. Due to habitat isolation and extensive human disturbances, giant pandas in the north (i.e., Diebu, Zhouqu, and Wudou) are facing threats of local extinction. In order to protect pandas and their habitats in this area, some effective conservation approaches, such as establishing new reserves in gap areas, creating corridors among patches, and seasonally controlling traffic flux in key roads, should be implemented in the future to link these isolated habitats together.  相似文献   

3.
Ecological-niche factor analysis (ENFA) is a multivariate approach to study geographic distribution of species on a large scale with only “presence” data. It has been widely applied in many fields including wildlife management, habitat assessment and habitat prediction. In this paper, this approach was applied in habitat suitability assessment for giant pandas in Pingwu County, Sichuan Province, China. With “presence” data of giant pandas and remote sensing data, habitat suitability of pandas in this county was evaluated based on ENFA model, and spatial distribution pattern of nature reserves and conservation gaps were then evaluated. The results show that giant pandas in this county prefer high-elevation zones (> 2128 m) dominated by coniferous forest, and mixed coniferous and deciduous broadleaf forest, and avoid deciduous broadleaf forest and shrubs. Pandas avoid staying at habitats with human disturbances. Farmland is a major factor threatening panda habitat. Panda habitat is mainly distributed in north and west of Pingwu with a total area of 234033 hm2, 106345hm2 for suitable habitat and 127688 hm2 for marginally suitable habitat). 3 nature reserves were located in Pingwu, covering over 49.2% of total suitable habitat and 45.6% of total marginally suitable habitat. Although 47.2% of panda habitat was in reserves under protection, connectivity between reserves was weak and a conservation gap existed in the north part of Pingwu. Thus, a new nature reserve in Baima and Mupi should be established to link the isolated habitats.  相似文献   

4.
气候变化对邛崃山系大熊猫主食竹和栖息地分布的影响   总被引:1,自引:0,他引:1  
气候变化对生物多样性的影响,特别是珍稀濒危物种的影响是当前的研究热点。全球气候变化对大熊猫的影响一直受到广泛关注。根据野外调查的大熊猫活动痕迹点、竹类分布点和主食竹扩散距离数据,采用Maxent模型,利用植被、地形、气候等因素,在RCP8.5下分析了2050年和2070年邛崃山系大熊猫主食竹分布及栖息地变化趋势。结果显示:(1)未来大熊猫适宜生境及主食竹气候适宜区面积均有所减少,到2070年分别减少37.2%和4.7%;(2)未来主食竹分布范围总体向高海拔扩展,但面积持续减少,到2070年分布面积比当前减少8.3%;(3)大熊猫栖息地未来有向高海拔扩张的趋势,在低海拔地区退缩明显,到2070年较当前减少27.2%;但到2070年大熊猫栖息地面积加上非栖息地有主食竹分布的面积,较现有大熊猫栖息地面积大1.5%;(4)受气候变化影响较严重的区域是邛崃山系南部以及低海拔地区,其余区域所受影响相对较小;(5)未来需要加强对受气候变化影响严重区域的监测与保护,特别是邛崃山系中部的大熊猫集中分布区。  相似文献   

5.
汶川地震对大熊猫栖息地的影响与恢复对策   总被引:9,自引:0,他引:9       下载免费PDF全文
 大熊猫是生物多样性保护的旗舰种, 保护大熊猫及其栖息地是保护生物多样性和生态系统功能完整性与稳定性的重要保障体现。汶川地震灾区位于大熊猫重点分布区岷山-邛崃山, 地震及其次生灾害导致该区27个大熊猫自然保护区不同程度受损, 8.3%的大熊猫栖息地因地震而被破坏。地震及其次生灾害对大熊猫栖息地的影响主要表现在: 1) 地震埋没和砸毁大熊猫赖以生存的主食竹, 地震可能诱发主食竹开花, 威胁到大熊猫的健康和食物安全; 2) 地震及其诱发的土壤和山石运动显著影响森林的动态特征, 森林大面积丧失或质量下降; 3) 地震改变大熊猫栖息地生境特征, 大熊猫个体交流的廊道阻断, 形成“生殖孤岛”, 遗传多样性降低, 栖息地破碎化进程加快。应对震后大熊猫栖息地恢复的主要对策有: 1) 重新评估震后大熊猫栖息地质量, 并重新规划现有大熊猫保护区群的布局; 2) 应用地理信息系统、遥感及数学模型等手段与野外实地实证研究相结合的方法, 全面查清震后大熊猫栖息地主食竹资源状况及分布规律并及时监测其动态, 复壮更新大熊猫主食竹; 3) 利用天然植被自然恢复和人工重建等措施恢复因地震而退化或丧失的大熊猫栖息地。  相似文献   

6.
Climate change might pose an additional threat to the already vulnerable giant panda (Ailuropoda melanoleuca). Effective conservation efforts require projections of vulnerability of the giant panda in facing climate change and proactive strategies to reduce emerging climate‐related threats. We used the maximum entropy model to assess the vulnerability of giant panda to climate change in the Qinling Mountains of China. The results of modeling included the following findings: (1) the area of suitable habitat for giant pandas was projected to decrease by 281 km2 from climate change by the 2050s; (2) the mean elevation of suitable habitat of giant panda was predicted to shift 30 m higher due to climate change over this period; (3) the network of nature reserves protect 61.73% of current suitable habitat for the species, and 59.23% of future suitable habitat; (4) current suitable habitat mainly located in Chenggu, Taibai, and Yangxian counties (with a total area of 987 km2) was predicted to be vulnerable. Assessing the vulnerability of giant panda provided adaptive strategies for conservation programs and national park construction. We proposed adaptation strategies to ameliorate the predicted impacts of climate change on giant panda, including establishing and adjusting reserves, establishing habitat corridors, improving adaptive capacity to climate change, and strengthening monitoring of giant panda.  相似文献   

7.
2008年的汶川地震发生在大熊猫集中分布的区域,对大熊猫的栖息地造成了严重破坏.利用龙溪—虹口和唐家河两个国家级自然保护区地震前(2003~ 2007)和地震后(2008~ 2010)共计7年的大熊猫监测数据,就汶川地震对大熊猫栖息地利用格局的影响进行了分析.研究结果表明:(1)地震前5年,大熊猫对栖息地的利用格局在年间没有显著变化;(2)地震后的2年间,大熊猫对栖息地的利用格局在年间没有显著变化;(3)地震前后连续7年调查的样线中,大熊猫对栖息地的利用格局在年间没有显著变化;(4)在龙溪一虹口保护区,大熊猫对样线的利用与滑坡体的面积没有显著关系,即大熊猫对栖息地的空间利用没有受到滑坡体面积大小的显著影响;(5)虽然从现有资料发现地震对大熊猫栖息地的利用格局没有显著的影响,但仍然需要在震后加强对大熊猫及其栖息地的保护.  相似文献   

8.
野生大熊猫现状、面临的挑战及展望   总被引:20,自引:0,他引:20  
严旬 《兽类学报》2005,25(4):402-406
截至2003年底,我国野生大熊猫种群数量达1596只,分布在陕西、四川和甘肃3省的45个县境内,总栖息地面积达2304991hm^2。与第2次大熊猫调查相比,野生大熊猫生存状况已得到改善,分布范围扩大、栖息地面积增加、种群数量进一步增长。本文在第3次大熊猫调查的基础上,就野生大熊猫种群及栖息地现状进行了分析,指出未来保护大熊猫所面临的3个方面的挑战,即来自物种自身生物学特性的挑战、栖息地破碎化及隔离小种群未来命运的挑战以及大熊猫保护与社区经济发展需求相冲突的挑战。作者还就我国大熊猫保护前景进行了展望,即自然保护区数量将进一步增加,栖息地状况将进一步改善;种群数量在总体保持稳定的基础上将逐步增长,但局部小种群灭绝风险将加剧;圈养种群将形成能自我维持的种群,圈养个体通过培训将逐步放归到隔离野生小种群中以改变其命运。  相似文献   

9.
用间接遥感方法探测大熊猫栖息地竹林分布   总被引:2,自引:1,他引:1  
竹子是野生大熊猫赖以生存的唯一食物。探测大熊猫栖息地内的竹林分布状况,有助于深入了解大熊猫及其栖息地的空间分布格局与特点,并为评估其栖息地适宜性、破碎化程度和生态承载力提供科学依据。由于大熊猫的主食竹大都生长于林下,直接通过遥感影像解译的方法很难实现对其分布密度的探测。以佛坪自然保护区的两大优势竹种——巴山木竹和秦岭箭竹为例,在运用遥感和GIS方法获取空间连续的环境变量时,引入了林上和林下的光照条件,通过分析不同竹种与各环境要素之间的关系,建立竹子密度的预测模型,最后在GIS空间分析技术的支持下实现了对林下竹子密度的绘制。研究结果显示:该方法能够比较准确地预测出林下竹子的分布状态,对两种竹子的密度预测精度均可达到70%以上。  相似文献   

10.
放牧对冶勒自然保护区大熊猫生境的影响   总被引:9,自引:1,他引:8  
四川冶勒自然保护区周边村民的牲畜基本上都在保护区内放养。为研究放牧和大熊猫对竹类的利用及放牧强度与竹类的关系 ,利用Forageratio选择指数 ,Pearson相关分析和联列表独立性检验 ,对调查数据进行分析。结果表明 ,大熊猫活动区海拔为 2 870~ 390 0m ,并喜欢选择竹类盖度为 5 0 %~ 10 0 % ,竹类高度 2~ 3m ,竹类生长状况好的竹林。而放牧海拔为 2 70 0~ 4 0 0 0m ,放牧对竹类的盖度、高度、生长状况没有选择性 ,为随机利用。放牧海拔与大熊猫活动海拔无显著相关。大熊猫在放牧生境活动的频率较低 ;放牧生境中竹类的成竹平均密度和竹子平均密度都低于大熊猫活动生境 ,枯死竹比例高于大熊猫活动生境。放牧强度与竹类的有、无和竹类盖度是相关联的 ,大熊猫出现与否也与放牧活动相关联 (在 95 %的置信度 ,P <0 0 5 )。放牧强度强的生境没有大熊猫活动 ,竹子的盖度也较低。由于放牧活动对竹类的生长和盖度造成影响 ,从而影响大熊猫对放牧生境的利用 ,在保护区内应采取一定的措施控制放牧活动。  相似文献   

11.
大相岭北坡大熊猫生境适宜性评价   总被引:22,自引:2,他引:20  
2005 年3 ~11月采用样线法和样方法对大相岭北坡大熊猫栖息地进行了调查,通过利用样方法发现的大熊猫痕迹频次对栖息地的适宜性进行景观连接度(适宜性)赋值,对大相岭北坡大熊猫栖息地的质量进行了分析评价。研究区面积约为2266.79 km2 ,其中竹林分布面积约为842.3 km2 。仅有约56.8 km2 占6.8%的竹林面积是适宜大熊猫生存的地区,次适宜地区面积为96.3 km2 ,约占11.4%,较差适宜地区面积为177.4 km2,约占21.1%,3 个等级加到一起共为330.5 km2 ,占竹林面积的39.3%,主要分布在2200~2800 m 的平缓山坡,有60% 以上为不适宜地区。人为活动对大熊猫栖息地的影响主要是不仅减少了大熊猫的生境面积,也降低了大熊猫亚种群之间的景观连接度,对大熊猫种群之间的基因交流产生阻碍。作者通过实际调查提出了管理措施。  相似文献   

12.
Predicting habitat suitability under climate change is vital to conserving biodiversity. However, current species distribution models rely on coarse scale climate data, whereas fine scale microclimate data may be necessary to assess habitat suitability and generate predictive models. Here, we evaluate disparities between temperature data at the coarse scale from weather stations versus fine-scale data measured in microhabitats required for a climate-sensitive mammal, the American pika (Ochotona princeps). We collected two years of temperature data in occupied talus habitats predicted to be suitable (high elevation) and unsuitable (low elevation) by the bioclimatic envelope approach. At low elevations, talus surface and interstitial microclimates drastically differed from ambient temperatures measured on-site and at a nearby weather station. Interstitial talus temperatures were frequently decoupled from high ambient temperatures, resulting in instantaneous disparities of over 30°C between these two measurements. Microhabitat temperatures were also highly heterogeneous, such that temperature measurements within the same patch of talus were not more correlated than measurements at distant patches. An experimental manipulation revealed that vegetation cover may cool the talus surface by up to 10°C during the summer, which may contribute to this spatial heterogeneity. Finally, low elevation microclimates were milder and less variable than typical alpine habitat, suggesting that, counter to species distribution model predictions, these seemingly unsuitable habitats may actually be better refugia for this species under climate change. These results highlight the importance of fine-scale microhabitat data in habitat assessments and underscore the notion that some critical refugia may be counterintuitive.  相似文献   

13.
The Qinling giant panda (Ailuropoda melanoleuca) is an endangered endemic species to China. Despite ongoing efforts to ensure its conservation, concerns about maintaining its populations persist. We used GIS fed with data on land use including road network of 2001, third national giant panda survey, and a digital elevation model (DEM) to assess the impact of road construction on giant panda habitat, and estimate the carrying capacity of the Qinling Mountain area. We assessed habitat suitability with a mechanistic model, and conducted correlation analysis to evaluate relationship between the extent of giant panda habitat and amount of sites occupied by pandas within of 5 km × 5 km grid. We also estimated the carrying capacity of the Qinling Mountainous Area.
Our results revealed a significant correlation (R2 = 0.447, P < 0.01) between the number of sites with signs left by giant panda and the extent of habitat within of 5 km × 5 km grid. The minimum habitat area that can support one panda was 10 km2. Before the road network construction, the area of habitat suitable for the panda amounted about 1561 km2 and that of marginally suitable habitat about 1499 km2. The corresponding carrying capacity represented about 240 individuals. After the road network construction, the suitable habitat area was reduced by nearly 30% to 1093 km2. Marginally suitable habitat and unsuitable habitat have both increased by 17% and 1%, respectively. As a result, the potential population size which the habitat could support was reduced to 217 individuals. The study results also suggested that most impacts on habitat from road construction took place in the high elevation areas above 1500 m. However, regarding the impact on the giant panda habitat, road networks developed much more inside the current nature reserves than outside of them.  相似文献   

14.
Fan J T  Li J S  Quan Z J  Wu X P  Hu L L  Yang Q P 《农业工程》2011,31(3):145-149
The Qinling giant panda (Ailuropoda melanoleuca) is an endangered endemic species to China. Despite ongoing efforts to ensure its conservation, concerns about maintaining its populations persist. We used GIS fed with data on land use including road network of 2001, third national giant panda survey, and a digital elevation model (DEM) to assess the impact of road construction on giant panda habitat, and estimate the carrying capacity of the Qinling Mountain area. We assessed habitat suitability with a mechanistic model, and conducted correlation analysis to evaluate relationship between the extent of giant panda habitat and amount of sites occupied by pandas within of 5 km × 5 km grid. We also estimated the carrying capacity of the Qinling Mountainous Area.
Our results revealed a significant correlation (R2 = 0.447, P < 0.01) between the number of sites with signs left by giant panda and the extent of habitat within of 5 km × 5 km grid. The minimum habitat area that can support one panda was 10 km2. Before the road network construction, the area of habitat suitable for the panda amounted about 1561 km2 and that of marginally suitable habitat about 1499 km2. The corresponding carrying capacity represented about 240 individuals. After the road network construction, the suitable habitat area was reduced by nearly 30% to 1093 km2. Marginally suitable habitat and unsuitable habitat have both increased by 17% and 1%, respectively. As a result, the potential population size which the habitat could support was reduced to 217 individuals. The study results also suggested that most impacts on habitat from road construction took place in the high elevation areas above 1500 m. However, regarding the impact on the giant panda habitat, road networks developed much more inside the current nature reserves than outside of them.  相似文献   

15.
Habitat use and separation between the two sympatric species, the giant panda and the red panda, have been primary causes of coexistence at the fine scale. In this paper, we addressed the question of coexistence between species in space. By Ecological Niche Factor Analysis, we calculated species-specific habitat requirements, built habitat suitability maps and examined interspecific differences in spatial niche parameters. According to the ENFA scores, suitable habitats in the giant and red panda are surrounded by high-altitude, and are rich in conifer forest. Compared with the giant panda, however, the red panda rather preferred sparse forests, and normally colonized far from village and road. Despite similar narrow niche breadth for both pandas, difference of niche overlap indices implied that the width of environmental niche of red pandas almost completely encompasses that of the giant panda. We, therefore, suggest that differences in use of ecological niche variables may contribute to coexistence of the sympatric species in space. Based on highly suitable locations of the sympatric species maps, most official reserves appear to be poorly located or are too small, and new reserves are recommended to be established in the central part of core habitats in the Liangshan Mountains.  相似文献   

16.
Aim To examine the effects of forest fragmentation on the distribution of the entire wild giant panda (Ailuropoda melanoleuca) population, and to propose a modelling approach for monitoring the spatial distribution and habitat of pandas at the landscape scale using Moderate Resolution Imaging Spectro‐radiometer (MODIS) enhanced vegetation index (EVI) time‐series data. Location Five mountain ranges in south‐western China (Qinling, Minshan, Qionglai, Xiangling and Liangshan). Methods Giant panda pseudo‐absence data were generated from data on panda occurrences obtained from the third national giant panda survey. To quantify the fragmentation of forests, 26 fragmentation metrics were derived from 16‐day composite MODIS 250‐m EVI multi‐temporal data and eight of these metrics were selected following factor analysis. The differences between panda presence and panda absence were examined by applying significance testing. A forward stepwise logistic regression was then applied to explore the relationship between panda distribution and forest fragmentation. Results Forest patch size, edge density and patch aggregation were found to have significant roles in determining the distribution of pandas. Patches of dense forest occupied by giant pandas were significantly larger, closer together and more contiguous than patches where giant pandas were not recorded. Forest fragmentation is least in the Qinling Mountains, while the Xiangling and Liangshan regions have most fragmentation. Using the selected landscape metrics, the logistic regression model predicted the distribution of giant pandas with an overall accuracy of 72.5% (κ = 0.45). However, when a knowledge‐based control for elevation and slope was applied to the regression, the overall accuracy of the model improved to 77.6% (κ = 0.55). Main conclusions Giant pandas appear sensitive to patch size and isolation effects associated with fragmentation of dense forest, implying that the design of effective conservation areas for wild giant pandas must include large and dense forest patches that are adjacent to other similar patches. The approach developed here is applicable for analysing the spatial distribution of the giant panda from multi‐temporal MODIS 250‐m EVI data and landscape metrics at the landscape scale.  相似文献   

17.
移地与圈养大熊猫野外放归的探讨   总被引:5,自引:0,他引:5  
移地是指将生物有机体从一个区域自由释放到另一区域的移动,通常包括引入、重引入以及复壮等3 种类型。野生动物的移地有较悠久的历史。在许多国家,通过移地以维持濒危野生动物种群在野外的长期续存已成为保护生物学上的一种重要手段。影响圈养动物野外放归成功的因素主要来自物种生物学特性、自然环境、社会生物学以及放归方式等几方面,同时,放归亦给基础生态学研究带来了新的机遇与挑战。大熊猫是我国特有的珍稀兽类,分布在秦岭、岷山、邛崃山、大相岭、小相岭以及凉山等几大隔离的山系。由于部分山系栖息地的高度破碎以及隔离小种群普遍面临的来自种群及环境等随机因素的影响,单纯依靠就地保护的措施可能并不足以保证这些隔离小种群在野外长期续存。在圈养大熊猫种群数量不断增加的情况下,将圈养个体放归野外以复壮孤立小种群应是一种有效的保护手段,同时,随着大熊猫栖息地质量的逐步改善,圈养大熊猫野外放归的时机亦逐步成熟。文中尚就圈养大熊猫放归野外之前亟待解决的问题进行了讨论。  相似文献   

18.
Livestock grazing and the collection of bamboo shoots are the main threats to giant panda (Ailuropoda melanoleuca) habitat in the Liangshan Mountains in China. It is important to clarify the effect of these disturbances to the giant panda to formulate targeted management policies. Based on species distribution models and daily activity models, we investigated the effects of livestock grazing and bamboo shoot collection on giant pandas from May 2021 to July 2022. Our results indicated the giant panda's suitable habitat in the reserve covered 51.83 km2 (15.02% of the reserve area). Grazing and bamboo shoot collection led to losses of 19.08 km2 and 7.68 km2 of suitable habitat, respectively. Together, the 2 activities resulted in a loss of 28.35 km2 of suitable habitat, which was more than half of the area of panda habitat. The areas of suitable habitat for giant pandas significantly overlapped with the areas affected by both disturbances. Giant pandas did not show significant differences in daily activity rhythms under a single disturbance, but the daily activity rhythms of giant pandas differed when we compared the area combining the 2 disturbances with the undisturbed area. Our study reveals that the anthropogenic disturbances in the reserve have varying effects on the suitable habitat range and daily activity rhythm of giant pandas and evidence of a synergistic effect. Therefore, when formulating relevant conservation policies, it is important to fully evaluate the extent and characteristics of anthropogenic disturbances in shaping the population distribution and habitat preferences of the giant panda and other wildlife to enhance the efficacy of conservation management practices.  相似文献   

19.
AimWe incorporated genetic structure and life history phase in species distribution models (SDMs) constructed for a widespread spiny lobster, to reveal local adaptations specific to individual subspecies and predict future range shifts under the RCP 8.5 climate change scenario.LocationIndo‐West Pacific.MethodsMaxEnt was used to construct present‐day SDMs for the spiny lobster Panulirus homarus and individually for the three genetically distinct subspecies of which it comprises. SDMs incorporated both sea surface and benthic (seafloor) climate layers to recreate discrete influences of these habitats during the drifting larval and benthic juvenile and adult life history phases. Principle component analysis (PCA) was used to infer environmental variables to which individual subspecies were adapted. SDM projections of present‐day habitat suitability were compared with predictions for the year 2,100, under the RCP 8.5 climate change scenario.ResultsIn the PCA, salinity best explained P. h. megasculptus habitat suitability, compared with current velocity in P. h. rubellus and sea surface temperature in P. h. homarus. Drifting and benthic life history phases were adapted to different combinations of sea surface and benthic environmental variables considered. Highly suitable habitats for benthic phases were spatially enveloped within more extensive sea surface habitats suitable for drifting larvae. SDMs predicted that present‐day highly suitable habitats for P. homarus will decrease by the year 2,100.Main conclusionsIncorporating genetic structure in SDMs showed that individual spiny lobster subspecies had unique adaptations, which could not be resolved in species‐level models. The use of sea surface and benthic climate layers revealed the relative importance of environmental variables during drifting and benthic life history phases. SDMs that included genetic structure and life history were more informative in predictive models of climate change effects.  相似文献   

20.
大熊猫是中国特有的珍稀濒危物种,而西氏贝蛔虫是大熊猫体内最为常见的肠道寄生虫,对野生和圈养大熊猫危害极大。考虑到大熊猫因分布区域的差异而形成了不同的亚种以及寄生虫与宿主间广泛的协同进化关系,西氏贝蛔虫是否也存在与大熊猫相适应的亚种分化一直是野生动物学家极其关注和热议的话题。为此,本文选择中国两大山系(岷山和邛崃)大熊猫种群体内共计34株西氏贝蛔虫虫体样本进行种群遗传多态性研究。利用PCR技术扩增出了岷山(14株)和邛崃(20株)西氏贝蛔虫的线粒体12S基因全序列并对其做了遗传多样性分析。结果表明:(1)34个样本包含9个单倍型,呈现出一个高单倍性多样性和低核苷酸多样性的特点;(2)负的Tajima's D和Fu's Fs中性检验值及“多峰型”的种群歧点分布图暗示种群不久前曾经历过突增长的现象;(3)低的种群间的分化系数和高的基因流表明两个地理种群间未形成显著的遗传分化;(4)系统发育树和单倍型网络图表明两山系种群分布无区域特异性。因此,岷山和邛崃山系的大熊猫体内的西氏贝蛔虫种群遗传变异性较低,分化不明显。该发现不仅暗示了西氏贝蛔虫与其宿主(大熊猫)的进化不同步,而且还为不同区域大熊猫西氏贝蛔虫病的监控提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号