首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Green lizards of the genus Lacerta have served as excellent models for studying the impact of Pleistocene climatic oscillations on genetic structures. The Caspian green lizard, Lacerta strigata, occupies various habitats across the Caucasus and the South Caspian Sea, with the Hyrcanian Forests and north of the Alborz Mountains forming the core of the range. This study aimed to re‐examine the phylogenetic relationships of L. strigata with other congeneric members and to assess the genetic structure and historical demography of the species. Furthermore, Species Distribution Models (SDMs) were performed to infer the species'' potential habitat suitability and were then projected on climate scenarios reflecting current and past (6 ky and 21 ky before present) conditions. A total of 39 individuals collected from most of the distribution range, together with additional lacertid species sequences from the GenBank database, were examined using mtDNA (Cyt b and 12S ribosomal RNA) and nuclear (C‐mos and β‐fibrinogen) sequence data. Based on the phylogenetic analyses, L. strigata was found to be a sister taxon to all other members of the genus. The species included two main clades (regional western and eastern) that diverged in a period between the Early and Middle Pleistocene. Based on the BBM and S‐Diva analyses, both dispersal and vicariance events explained the phylogeographic structure of the species in the Hyrcanian Forests. The historical demographic analyses using Bayesian skyline plots showed a mild increase in the effective population size from about 120 Kya for the western regional clade. According to phylogeographic structures and SDMs evidence, as in other species within the region, it appears that the south of the Caspian Sea (Hyrcanian Forests), and the Alborz Mountains acted as multiple refugia during cold periods and promoted expansion outwards amid the warm periods. Overall, the results provided evidence that the genetic structure of the species has been influenced by the Pleistocene climatic fluctuations.  相似文献   

2.
Longevity is highly variable among animal species and has coevolved with other life‐history traits, such as body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level and might even have an influence on the rate of aging in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life‐history traits independent of body size are largely underexplored for birds. To test associations of life‐history traits and telomere dynamics, we conducted a phylogenetic meta‐analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life‐history traits. We examined 3 principal components of 12 life‐history variables that represented: body size (PC1), the slow–fast continuum of pace of life (PC2), and postfledging parental care (PC3). Phylogeny had at best a small‐to‐medium influence on Adult and Chick TL (r 2 = .190 and .138, respectively), but a substantial influence on TROC (r 2 = .688). Phylogeny strongly influenced life histories: PC1 (r 2 = .828), PC2 (.838), and PC3 (.613). Adult TL and Chick TL were poorly associated with the life‐history variables. TROC, however, was negatively and moderate‐to‐strongly associated with PC2 (unadjusted r = −.340; with phylogenetic correction, r = −.490). Independent of body size, long‐lived species with smaller clutches, and slower embryonic rate of growth may exhibit less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged, even among closely avian‐related species, yet telomere dynamics are strongly linked to the pace of life.  相似文献   

3.
AimUnderstanding spatial patterns of the distribution of adult native oyster, Ostrea edulis, and the invasive Magallana (Crassostrea) gigas is important for management of these populations. The aim of this study was to use ensemble SDM’s to (a) identify and predict conservation hotspots, (b) assess the current level of protection for O. edulis, and (c) quantify the amount of overlap between the two species where interactions with M. gigas are most likely.LocationSkagerrak, Sweden.MethodsWe used data collected by video at depths from 0.5 to 10 m in 436 sites. Models of occurrence and densities >1 m−2 were fitted and assessed using ensemble methods (“biomod2” package). Models of high‐density hotspots were used to predict, map, and quantify areal extent of the species in order to assess the degree of overlap with protected areas and the potential for interactions between the two species.ResultsBoth species were widely distributed in the region. Observations of high‐density habitats, mainly occurring at depths of ≈3 and 0.5 m for O. edulis and M. gigas, respectively, were found in 4% and 2% of the sites. Models provided useful predictions for both species (AUC = 0.85–0.99; sensitivity = 0.74–1.0; specificity = 0.72–0.97). High‐density areas occupy roughly 15 km2 each with substantial overlap between species. 50% of these are protected only by fisheries regulations, 44% are found in Natura 2000 reserves and 6% of the predicted O. edulis enjoys protection in a national park.Main conclusionsData collection by video in combination with SDM’s provides a realistic approach for large‐scale quantification of spatial patterns of marine population and habitats. O. edulis and M. gigas are common in the area, but a large proportion of the most valuable O. edulis habitats are not found in protected areas. The overlap between species suggests that efforts to manage the invasive M. gigas need to be integrated with management actions to conserve the native O. edulis.  相似文献   

4.
Human‐mediated habitat fragmentation in freshwater ecosystems can negatively impact genetic diversity, demography, and life history of native biota, while disrupting the behavior of species that are dependent on spatial connectivity to complete their life cycles. In the Alouette River system (British Columbia, Canada), dam construction in 1928 impacted passage of anadromous sockeye salmon (Oncorhynchus nerka), with the last records of migrants occurring in the 1930s. Since that time, O. nerka persisted as a resident population in Alouette Reservoir until experimental water releases beginning in 2005 created conditions for migration; two years later, returning migrants were observed for the first time in ~70 years, raising important basic and applied questions regarding life‐history variation and population structure in this system. Here, we investigated the genetic distinctiveness and population history of Alouette Reservoir O. nerka using genome‐wide SNP data (n = 7,709 loci) collected for resident and migrant individuals, as well as for neighboring anadromous sockeye salmon and resident kokanee populations within the Fraser River drainage (n = 312 individuals). Bayesian clustering and principal components analyses based on neutral loci revealed five distinct clusters, largely associated with geography, and clearly demonstrated that Alouette Reservoir resident and migrant individuals are genetically distinct from other O. nerka populations in the Fraser River drainage. At a finer level, there was no clear evidence for differentiation between Alouette Reservoir residents and migrants; although we detected eight high‐confidence outlier loci, they all mapped to sex chromosomes suggesting that differences were likely due to uneven sex ratios rather than life history. Taken together, these data suggest that contemporary Alouette Reservoir O. nerka represents a landlocked sockeye salmon population, constituting the first reported instance of deep‐water spawning behavior associated with this life‐history form. This finding punctuates the need for reassessment of conservation status and supports ongoing fisheries management activities in Alouette Reservoir.  相似文献   

5.
  1. In mosaic marine habitats, such as intertidal zones, ocean acidification (OA) is exacerbated by high variability of pH, temperature, and biological CO2 production. The nonlinear interactions among these drivers can be context‐specific and their effect on organisms in these habitats remains largely unknown, warranting further investigation.
  2. We were particularly interested in Mytilus edulis (the blue mussel) from intertidal zones of the Gulf of Maine (GOM), USA, for this study. GOM is a hot spot of global climate change (average sea surface temperature (SST) increasing by >0.2°C/year) with >60% decline in mussel population over the past 40 years.
  3. Here, we utilize bioenergetic underpinnings to identify limits of stress tolerance in M. edulis from GOM exposed to warming and OA. We have measured whole‐organism oxygen consumption rates and metabolic biomarkers in mussels exposed to control and elevated temperatures (10 vs. 15°C, respectively) and current and moderately elevated P CO2 levels (~400 vs. 800 µatm, respectively).
  4. Our study demonstrates that adult M. edulis from GOM are metabolically resilient to the moderate OA scenario but responsive to warming as seen in changes in metabolic rate, energy reserves (total lipids), metabolite profiles (glucose and osmolyte dimethyl amine), and enzyme activities (carbonic anhydrase and calcium ATPase).
  5. Our results are in agreement with recent literature that OA scenarios for the next 100–300 years do not affect this species, possibly as a consequence of maintaining its in vivo acid‐base balance.
  相似文献   

6.
ObjectivesIdiopathic pulmonary fibrosis (IPF) is marked by the excessive accumulation of extracellular matrix, which participates in a variety of chronic diseases or injuries and seriously threatens human health. Due to the side effects of clinical drugs, there is still a need to develop novel and less toxic drugs to treat pulmonary fibrosis.Materials and MethodsSKLB‐YTH‐60 was developed through computer‐aided drug design, de novo synthesis and high‐throughput screening. We employed the bleomycin (BLM)‐induced lung fibrosis animal models and used TGF‐β1 to induce the epithelial‐mesenchymal transition (EMT) of A549 cells in vitro. Meanwhile, the protein expression of collagen I and the α‐smooth muscle actin (α‐SMA), E‐cadherin, p‐FGFR1, p‐PLCγ, p‐Smad2/3 and p‐Erk1/2 was detected by western blot.ResultsYTH‐60 has obvious anti‐proliferative activity on fibroblasts and A549 cells. Moreover, YTH‐60 could impair the EMT of A549 cells and suppressed fibrosis by inhibiting FGFR and TGF‐β/Smad‐dependent pathways. Intraperitoneal administration of preventive YTH‐60 could significantly reduce the degree of fibrosis in mice and regulate the imbalance of the immune microenvironment. In addition, we observed that therapeutic YTH‐60 treatment attenuated fibrotic changes in mice during the period of fibrosis. Importantly, YTH‐60 has shown an acceptable oral bioavailability (F = 17.86%) and appropriate eliminated half‐life time (T 1/2 = 8.03 hours).ConclusionsTaken together, these preclinical evaluations suggested that YTH‐60 could be a promising drug candidate for treating IPF.  相似文献   

7.
ObjectiveDue to limited immunological profiles of high‐grade serous ovarian cancer (HGSOC), we aimed to characterize its molecular features to determine whether a specific subset that can respond to immunotherapy exists.Materials and MethodsA training cohort of 418 HGSOC samples from TCGA was analysed by consensus non‐negative matrix factorization. We correlated the expression patterns with the presence of immune cell infiltrates, immune regulatory molecules and other genomic or epigenetic features. Two independent cohorts containing 482 HGSOCs and in vitro experiments were used for validation.ResultsWe identified immune and non‐immune groups where the former was enriched in signatures that reflect immune cells, infiltration and PD‐1 signalling (all, P < 0.001), and presented with a lower chromosomal aberrations but increased neoantigens, tumour mutation burden, and microsatellite instability (all, P < 0.05); this group was further refined into two microenvironment‐based subtypes characterized by either immunoactivation or carcinoma‐associated fibroblasts (CAFs) and distinct prognosis. CAFs‐immune subtype was enriched for factors that mediate immunosuppression and promote tumour progression, including highly expressed stromal signature, TGF‐β signalling, epithelial‐mesenchymal transition and tumour‐associated M2‐polarized macrophages (all, P < 0.001). Robustness of these immune‐specific subtypes was verified in validation cohorts, and in vitro experiments indicated that activated‐immune subtype may benefit from anti‐PD1 antibody therapy (P < 0.05).ConclusionOur findings revealed two immune subtypes with different responses to immunotherapy and indicated that some HGSOCs may be susceptible to immunotherapies or combination therapies.  相似文献   

8.
Invasive species are one of the main causes of biodiversity loss worldwide. As introduced, populations increase in abundance and geographical range, so does the potential for negative impacts on native communities. As such, there is a need to better understand the processes driving range expansion as species become established in recipient landscapes. Through an investigation into capacity for population growth and range expansion of introduced populations of a non‐native lizard (Podarcis muralis), we aimed to demonstrate how multi‐scale factors influence spatial spread, population growth, and invasion potential in introduced species. We collated location records of P. muralis presence in England, UK through data collected from field surveys and a citizen science campaign. We used these data as input for presence‐background models to predict areas of climate suitability at a national‐scale (5 km resolution), and fine‐scale habitat suitability at the local scale (2 m resolution). We then integrated local models into an individual‐based modeling platform to simulate population dynamics and forecast range expansion for 10 populations in heterogeneous landscapes. National‐scale models indicated climate suitability has restricted the species to the southern parts of the UK, primarily by a latitudinal cline in overwintering conditions. Patterns of population growth and range expansion were related to differences in local landscape configuration and heterogeneity. Growth curves suggest populations could be in the early stages of exponential growth. However, annual rates of range expansion are predicted to be low (5–16 m). We conclude that extensive nationwide range expansion through secondary introduction is likely to be restricted by currently unsuitable climate beyond southern regions of the UK. However, exponential growth of local populations in habitats providing transport pathways is likely to increase opportunities for regional expansion. The broad habitat niche of P. muralis, coupled with configuration of habitat patches in the landscape, allows populations to increase locally with minimal dispersal.  相似文献   

9.
The application of species distribution models (SDMs) to areas outside of where a model was created allows informed decisions across large spatial scales, yet transferability remains a challenge in ecological modeling. We examined how regional variation in animal‐environment relationships influenced model transferability for Canada lynx (Lynx canadensis), with an additional conservation aim of modeling lynx habitat across the northwestern United States. Simultaneously, we explored the effect of sample size from GPS data on SDM model performance and transferability. We used data from three geographically distinct Canada lynx populations in Washington (n = 17 individuals), Montana (n = 66), and Wyoming (n = 10) from 1996 to 2015. We assessed regional variation in lynx‐environment relationships between these three populations using principal components analysis (PCA). We used ensemble modeling to develop SDMs for each population and all populations combined and assessed model prediction and transferability for each model scenario using withheld data and an extensive independent dataset (n = 650). Finally, we examined GPS data efficiency by testing models created with sample sizes of 5%–100% of the original datasets. PCA results indicated some differences in environmental characteristics between populations; models created from individual populations showed differential transferability based on the populations'' similarity in PCA space. Despite population differences, a single model created from all populations performed as well, or better, than each individual population. Model performance was mostly insensitive to GPS sample size, with a plateau in predictive ability reached at ~30% of the total GPS dataset when initial sample size was large. Based on these results, we generated well‐validated spatial predictions of Canada lynx distribution across a large portion of the species'' southern range, with precipitation and temperature the primary environmental predictors in the model. We also demonstrated substantial redundancy in our large GPS dataset, with predictive performance insensitive to sample sizes above 30% of the original.  相似文献   

10.
11.
ObjectivesWhether periodic oral intake of postbiotics positively affects weight regulation and prevents obesity‐associated diseases in vivo is unclear. This study evaluated the action mechanism of Lactobacillus plantarum L‐14 (KTCT13497BP) extract and the effects of its periodic oral intake in a high‐fat‐diet (HFD) mouse model.Materials and methodsMouse pre‐adipocyte 3T3‐L1 cells and human bone marrow mesenchymal stem cells (hBM‐MSC) were treated with L‐14 extract every 2 days during adipogenic differentiation, and the mechanism underlying anti‐adipogenic effects was analysed at cellular and molecular levels. L‐14 extract was orally administrated to HFD‐feeding C57BL/6J mice every 2 days for 7 weeks. White adipose tissue was collected and weighed, and liver and blood serum were analysed. The anti‐adipogenic mechanism of exopolysaccharide (EPS) isolated from L‐14 extract was also analysed using Toll‐like receptor 2 (TLR2) inhibitor C29.ResultsL‐14 extract inhibited 3T3‐L1 and hBM‐MSC differentiation into mature adipocytes by upregulating AMPK signalling pathway in the early stage of adipogenic differentiation. The weight of the HFD + L‐14 group (31.51 ± 1.96 g) was significantly different from that of the HFD group (35.14 ± 3.18 g). L‐14 extract also significantly decreased the serum triacylglycerol/high‐density lipoprotein cholesterol ratio (an insulin resistance marker) and steatohepatitis. In addition, EPS activated the AMPK signalling pathway by interacting with TLR2, consequently inhibiting adipogenesis.ConclusionsEPS from L‐14 extract inhibits adipogenesis via TLR2 and AMPK signalling pathways, and oral intake of L‐14 extract improves obesity and obesity‐associated diseases in vivo. Therefore, EPS can be used to prevent and treat obesity and metabolic disorders.  相似文献   

12.
Many Northeast (NE) Pacific fishes and invertebrates survived Pleistocene glaciations in northern refugia, but the extent that kelps survived in northern areas is uncertain. Here, we test the hypothesis that populations of sugar kelp (Saccharina latissima) persisted in the Gulf of Alaska during ice‐age maxima when the western margin of the Cordilleran ice sheet covered coastal areas around the NE Pacific Ocean. We estimated genetic diversities within and phylogeographical relationships among 14 populations along 2,800 km in the NE Pacific and Bering Sea with partial sequences of mitochondrial DNA 5′‐cytochrome oxidase subunit I (COI, bp = 624, n = 543), chloroplast DNA ribulose‐1,5‐bisphosphate carboxylase large subunit‐3′ (rbcL, bp = 735, n = 514), and 11 microsatellite loci. Concatenated sequences of rbcL and COI showed moderate levels of within‐population genetic diversity (mean h = 0.200) but substantial differences among populations (ΦST = 0.834, p < .0001). Microsatellites showed moderate levels of heterozygosity within populations (mean H E = 0.391). Kelps in the same organellar lineage tended to cluster together, regardless of geographic origins, as indicated in a principal coordinate analysis (PCoA) of microsatellite genotypes. The PCoA also showed evidence of nuclear hybridizations between co‐occurring organellar lineages. Individual admixture plots with population clusters of K = 2, 6, and 9 showed increasing complexity with considerable historical admixture between some clusters. A time‐calibrated phylogeny placed divergences between rbcL‐COI lineages at 1.4 million years at most. The time frames of mutation in the rbcL‐COI lineages and microsatellite population clusters differed among locations. The existence of ancient lineages in the Gulf of Alaska, moderate levels of genetic diversity, and the absence of departures from neutrality are consistent with northern refugia during multiple Croll‐Milankovitch climate cycles in the Pleistocene Epoch.  相似文献   

13.
AimEvolutionary history of natural populations can be confounded by human intervention such as the case of decorator worm species Diopatra (Onuphidae), which have a history of being transported through anthropogenic activities. Because they build tubes and act as ecosystem engineers, they can have a large impact on the overall ecosystem in which they occur. One conspicuous member, Diopatra biscayensis, which was only described in 2012, has a fragmented distribution that includes the Bay of Biscay and the Normanno‐Breton Gulf in the English Channel. This study explores the origin of these worms in the Normanno‐Breton region, which has been debated to either be the result of a historic range contraction from a relic continuous population or a more recent introduction.LocationNortheastern Atlantic, the Bay of Biscay, and the Normanno‐Breton Gulf.MethodsWe utilized a RAD‐tag‐based SNP approach to create a reduced genomic data set to recover fine‐scale population structure and infer which hypothesis best describes the D. biscayensis biogeographic distribution. The reduced genomic data set was used to calculate standard genetic diversities and genetic differentiation statistics, and utilized various clustering analyses, including PCAs, DAPC, and admixture.ResultsClustering analyses were consistent with D. biscayensis as a single population spanning the Bay of Biscay to the Normanno‐Breton Gulf in the English Channel, although unexpected genetic substructure was recovered from Arcachon Bay, in the middle of its geographic range. Consistent with a hypothesized introduction, the isolated Sainte‐Anne locality in the Normanno‐Breton Gulf was recovered to be a subset of the diversity found in the rest of the Bay of Biscay.Main conclusionsThese results are congruent with previous simulations that did not support connectivity from the Bay of Biscay to the Normanno‐Breton Gulf by natural dispersal. These genomic findings, with support from previous climatic studies, further support the hypothesis that D. biscayensis phylogeographic connectivity is the result of introductions, likely through the regions’ rich shellfish aquaculture, and not of a historically held range contraction.  相似文献   

14.
  1. The development of encompassing general models of ecology is precluded by underrepresentation of certain taxa and systems. Models predicting context‐dependent outcomes of biotic interactions have been tested using plants and bacteria, but their applicability to higher taxa is largely unknown.
  2. We examined context dependency in a reproductive mutualism between two stream fish species: mound nest‐building bluehead chub Nocomis leptocephalus and mountain redbelly dace Chrosomus oreas, which often uses N. leptocephalus nests for spawning. We hypothesized that increased predator density and decreased substrate availability would increase the propensity of C. oreas to associate with N. leptocephalus and decrease reproductive success of both species.
  3. In a large‐scale in situ experiment, we manipulated egg predator density and presence of both symbionts (biotic context), and replicated the experiment in habitats containing high‐ and low‐quality spawning substrate (abiotic context).
  4. Contradictory to our first hypothesis, we observed that C. oreas did not spawn without its host. The interaction outcome switched from commensalistic to mutualistic with changing abiotic and biotic contexts, although the net outcome was mutualistic.
  5. The results of this study yielded novel insight into how context dependency operates in vertebrate mutualisms. Although the dilution effect provided by C. oreas positively influenced reproductive success of N. leptocephalus, it was not enough to overcome both egg predation and poor spawning habitat quality. Outcomes of the interaction may be ultimately determined by associate density. Studies of context dependency in vertebrate systems require detailed knowledge of species life‐history traits.
  相似文献   

15.
In semi‐arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom‐up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource‐restricted environments. Using a 21‐year biannual capture–recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi‐arid oak woodland of coastal‐central California. We applied Pradel''s temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal‐central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate.  相似文献   

16.
Vulnerable Kaiser''s mountain newt, Neurergus kaiseri, is endemic to highland streams, springs, and pools of the southwestern Zagros mountain, Iran. The present study aimed to use an integration of phylogeographical and species distribution modeling (SDM) approaches to provide new insights into the evolutionary history of the species throughout Quaternary climate oscillations. The phylogeographical analysis was followed by analyzing two mitochondrial DNA (mt‐DNA) markers including 127 control region (D‐loop) and 72 NADH dehydrogenase 2 (ND2) sequences from 15 populations in the entire species range that were obtained from GenBank. Potential recent and past distribution (the Last Glacial Maximum, LGM, 21 Kya and the Mid‐Holocene, 6 Kya) reconstructed by ensemble SDM using nine algorithms with CCSM4, MIROC‐ESM, and MPI‐ESM‐P models. Nkaiseri displayed two distinct lineages in the northern and southern regions that diverged in the Early‐Pleistocene. The demographics analysis showed signs of a slight increase in effective population size for both northern and southern populations in the Mid‐Pleistocene. Biogeography analysis showed that both vicariance and dispersal events played an important role in the formation of recent species distribution of N. kaiseri. Based on SDM projection onto paleoclimatic data, N. kaiseri displayed a scenario of past range expansion that followed by postglacial contraction. The models showed that the distribution range of the species may have shifted to a lower altitude during LGM while with amelioration of climatic during Mid‐Holocene to recent conditions caused the species to shift to the higher altitude. The findings of the current study support the hypothesis that the Zagros mountains​ may be acting as climatic refugia and play an important role in the protection of isolated populations during climate oscillations.  相似文献   

17.
ObjectivesAnti‐microbial peptides (AMPs) have been comprehensively investigated as a novel alternative to traditional antibiotics against microorganisms. Meanwhile, Tetrahedral DNA nanostructures (TDNs) have gained attention in the field of biomedicine for their premium biological effects and transportation efficiency as delivery vehicles. Hence, in this study, TDN/Histatin 5 (His‐5) was synthesized and the transport efficiency and anti‐fungal effect were measured to evaluate the promotion of His‐5 modified by TDNs.Materials and MethodsTetrahedral DNA nanostructures/His‐5 complex was prepared via electrostatic attraction and characterized by transmission electron microscopy (TEM), polyacrylamide gel electrophoresis (PAGE), dynamic light scattering (DLS) and electrophoretic light scattering (ELS). The anti‐fungal effect of the TDN/His‐5 complex was evaluated by determining the growth curve and colony‐forming units of C. albicans. The morphological transformation of C. albicans was observed by light microscope and scanning electron microscope (SEM). Immunofluorescence was performed, and potassium efflux was detected to mechanistically demonstrate the efficacy of TDN/His‐5.ResultsThe results showed that Histatin 5 modified by TDNs had preferable stability in serum and was effectively transported into C. albicans, leading to the increased formation of intracellular reactive oxygen species, higher potassium efflux and enhanced anti‐fungal effect against C. albicans.ConclusionsOur study showed that TDN/His‐5 was synthesized successfully. And by the modification of TDNs, His‐5 showed increased transport efficiency and improved anti‐fungal effect.  相似文献   

18.
Point 1: Stereo‐video camera systems (SVCSs) are a promising tool to remotely measure body size of wild animals without the need for animal handling. Here, we assessed the accuracy of SVCSs for measuring straight carapace length (SCL) of sea turtles.Point 2: To achieve this, we hand captured and measured 63 juvenile, subadult, and adult sea turtles across three species: greens, Chelonia mydas (n = 52); loggerheads, Caretta caretta (n = 8); and Kemp''s ridley, Lepidochelys kempii (n = 3) in the waters off Eleuthera, The Bahamas and Crystal River, Florida, USA, between May and November 2019. Upon release, we filmed these individuals with the SVCS. We performed photogrammetric analysis to extract stereo SCL measurements (eSCL), which were then compared to the (manual) capture measurements (mSCL).Point 3: mSCL ranged from 25.9 to 89.2 cm, while eSCL ranged from 24.7 to 91.4 cm. Mean percent bias of eSCL ranged from −0.61% (±0.11 SE) to −4.46% (±0.31 SE) across all species and locations. We statistically analyzed potential drivers of measurement error, including distance of the turtle to the SVCS, turtle angle, image quality, turtle size, capture location, and species.Point 4: Using a linear mixed effects model, we found that the distance between the turtle and the SVCS was the primary factor influencing measurement error. Our research suggests that stereo‐video technology enables high‐quality measurements of sea turtle body size collected in situ without the need for hand‐capturing individuals. This study contributes to the growing knowledge base that SVCS are accurate for body size measurements independent of taxonomic clade.  相似文献   

19.
Protein quality control mechanisms decline during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age‐associated cardiac dysfunction. Macroautophagy is the process by which post‐mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late‐in‐life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs. adult mice. As expected, 24‐month‐old male C57BL/6J mice (old) exhibited repressed autophagosome formation and protein aggregate accumulation in the heart, systolic and diastolic dysfunction, and reduced exercise capacity vs. 8‐month‐old (adult) mice (all < 0.05). To investigate the influence of late‐in‐life exercise training, additional cohorts of 21‐month‐old mice did (old‐ETR) or did not (old‐SED) complete a 3‐month progressive resistance treadmill running program. Body composition, exercise capacity, and soleus muscle citrate synthase activity improved in old‐ETR vs. old‐SED mice at 24 months (all < 0.05). Importantly, protein expression of autophagy markers indicate trafficking of the autophagosome to the lysosome increased, protein aggregate clearance improved, and overall function was enhanced (all < 0.05) in hearts from old‐ETR vs. old‐SED mice. These data provide the first evidence that a physiological intervention initiated late‐in‐life improves autophagic flux, protein aggregate clearance, and contractile performance in mouse hearts.  相似文献   

20.
The Gram‐negative bacterium Legionella pneumophila is the causative agent of Legionnaires'' disease and replicates in amoebae and macrophages within a distinct compartment, the Legionella‐containing vacuole (LCV). The facultative intracellular pathogen switches between a replicative, non‐virulent and a non‐replicating, virulent/transmissive phase. Here, we show on a single‐cell level that at late stages of infection, individual motile (PflaA‐GFP‐positive) and virulent (PralF‐ and PsidC‐GFP‐positive) L. pneumophila emerge in the cluster of non‐growing bacteria within an LCV. Comparative proteomics of PflaA‐GFP‐positive and PflaA‐GFP‐negative L. pneumophila subpopulations reveals distinct proteomes with flagellar proteins or cell division proteins being preferentially produced by the former or the latter, respectively. Toward the end of an infection cycle (˜ 48 h), the PflaA‐GFP‐positive L. pneumophila subpopulation emerges at the cluster periphery, predominantly escapes the LCV, and spreads from the bursting host cell. These processes are mediated by the Legionella quorum sensing (Lqs) system. Thus, quorum sensing regulates the emergence of a subpopulation of transmissive L. pneumophila at the LCV periphery, and phenotypic heterogeneity underlies the intravacuolar bi‐phasic life cycle of L. pneumophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号