首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
植物生长素参与植物生长和发育诸多方面的调节。研究表明,生长素的调节机制与Caz”的存在紧密相关。Caz”在植物激素的信号传导中起着信使作用(Hepler和Randy1985),它与钙调素(Ca.---urr-ulin,CaM)结合参与了各种类型植物激素应答反应的调节。现已查明,CaM的诸多功能常受其内源性结合蛋白的调控。本研究组曾分离得到一种新的植物CaM结合蛋白——CaMBP-10o实验证明,CaMBP-10通过与CaM的特异性结合显著抑制了CaM对其靶酶的激活(尚克进等1991)。前期工作还发现CaMBP-10对生长素诱导的小麦芽鞘伸长和质子外排均有…  相似文献   

2.
机械刺激(mechanical stimulation,MS)可提高烟草悬浮培养细胞的钙调素(calmodulin,CaM)活性,诱导烟草悬浮培养细胞耐热性的形成,外源Ca2+可加强,而Ca2+螯合剂EGTA、质膜Ca2+通道阻塞剂La3+和胞内Ca2+通道阻断剂钌红(RR),以及CaM拮抗剂氯丙嗪(CPZ)和三氟拉嗪(TFP)则削弱这种耐热性的形成。这些暗示Ca2+和CaM参与MS诱导的烟草悬浮培养细胞耐热性形成的调控。  相似文献   

3.
植物抗逆研究已有很大进展,但传递各种外界刺激的信号通路仍未可知,目前已有一些研究发现很多环境刺激与钙_钙调素系统有关。Ca2+信号系统是很重要的一种信号途径,CaM是目前已知的胞内Ca2+信号受体中最重要的一种,参与了多种生理活动的调节。在热激领域中,研究者已提出Ca2+ CaM系统可能参与了热激反应,在基因调节水平、转录水平、蛋白水平均有Ca2+和CaM参与热激的证据。其它环境刺激也能引起植物体内Ca2+和CaM的一系列变化。这为研究各种环境刺激可能的信号通路提供了基础和依据。  相似文献   

4.
植物钙/钙调素介导的信号转导系统   总被引:1,自引:0,他引:1  
钙离子(Ca2+)是一种重要的第二信使, 参与调节植物的生长发育和对环境的适应。钙调素(CaM)和类钙调蛋白(CML)是一类最主要的Ca2+感受器, 虽然其自身没有催化活性, 但可通过调节下游靶蛋白的活性, 进而调控细胞的各种生理活动。该文总结了植物体内CaM结合蛋白(CBP)的生理功能、鉴定方法和调控机理, 以及CaM介导的信号转导途径, 包括蛋白磷酸化与去磷酸化、基因转录、离子运输、活性氧代谢、激素和磷脂信号等, 并对今后的研究方向进行了展望。  相似文献   

5.
钙调蛋白(calmodulin,CaM)是Ca^2+的受体蛋白,活化的CaM经Ca^2+/CaM依赖性蛋白激酶(Ca^2+/calmodulin dependent protein kinases,CaMKs)途径,影响细胞的生长和分裂。CaMKs在调节不同组织正常细胞及恶性细胞的细胞周期进程、核转录及信号转导的过程中发挥重要作用,通过不同机制及Ca^2+/CaM依赖性激酶激酶诱导的相关级联反应影响多种细胞的增殖。对CaMKs主要成员CaM KⅠ、CaM KⅡ、CaM KⅢ、CaM KⅣ的生物学特点以及其在细胞增殖中作用的最新研究进展进行了综述。  相似文献   

6.
钙调素及钙调素相关蛋白在植物细胞中的研究进展   总被引:3,自引:0,他引:3  
夏快飞  梁承邺  叶秀粦 《广西植物》2005,25(3):269-273,244
植物对一系列生物和非生物刺激所产生的反应都与细胞内Ca2+信号转导有关,而钙调素、钙调素相关蛋白则是Ca2+信号转导的下游靶蛋白。该文介绍了钙调素的结构及其在植物细胞中的分布,钙调素及钙调素相关蛋白在植物细胞中的表达等方面的最近研究进展。  相似文献   

7.
通过提高摇床转速对烟草细胞施加机械刺激(Ms)可诱导其胞内一氧化氮(No)的快速产生和一氧化氮合酶(Nos)活性的提高,这种MS诱导的NO产生可被N0清除剂cPTIO和NOS抑制剂L-NMMA显著抑制。此外,Ca2+螯合剂EGTA、质膜Ca+通道阻断剂La3+、胞内Ca2+通道拮抗剂钌红,以及钙调素抑制剂CPZ和TFP预处理均不同程度地抑制了机械刺激诱导的烟草细胞NO的产生,而机械刺激过程中钙调素活性显著上升并与NOS活性和NO含量的变化相一致。这些结果暗示着(类)Nos酶催化的精氨酸依赖途径可能是机械刺激诱发烟草细胞NO产生的主要途径,Ca2+/CAM可能通过调节(类)NOS活性来调控No的产生。  相似文献   

8.
植物钙结合蛋白   总被引:1,自引:0,他引:1  
本文介绍了植物钙调素蛋白(CaM)、类钙调神经素B亚基蛋白(CBL)、Ca2+依赖蛋白激酶(CDPK)和其他钙结合蛋白的研究进展。  相似文献   

9.
继一氧化氮(NO)和一氧化碳(CO)之后,第三种气体信号分子硫化氢(H2S)对植物体生长发育和环境胁迫应答的调控正在受到越来越多的关注。钙离子(Ca2+)是重要的第二信使,参与植物对多种胁迫的响应。该实验以谷子这种抗逆性较强的作物为材料,对其响应六价铬(Cr6+)胁迫过程中H2S和Ca2+45号的互作进行了研究。结果表明,Cr6+胁迫显著激活谷子幼苗的H2s产生系统,外源H2S预处理能明显降低Cr6+胁迫对谷子根尖细胞的损伤,而H2S的合成抑制剂羟胺(HA)预处理,使得Cr6+对谷子的毒害增强;进一步实验发现,H2S能激活Ca2+信号下游相关基因的表达,同时Ca+能增强H2S的产生,表明在植物体内H2S和Ca+信号存在复杂的联系。该研究也证明,H2S和ca2+可以通过调节重金属离子转运蛋白增强谷子对Cr6+的耐受。  相似文献   

10.
钙调素(Calmodulin,CaM)是细胞内Ca^2+信号的主要受体,能够与靶蛋白相互结合调节靶蛋白的活性,在细胞增殖、分化、凋亡、迁移等过程中都起着重要作用。荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术是目前研究蛋白质相互作用比较成熟的方法之一。作者通过Cre-loxP位点特异性重组技术构建了带有CFP荧光蛋白标记的文库,与YFP—CaM共同转染HEK293细胞,应用荧光共振能量转移技术(FRET)进行检测,挑取发生FRET作用的单个细胞,并进行单细胞PcR检测。由此扩增出的片段通过测序和蛋白序列数据库NCBI进行序列比对后,筛选出与CaM产生相互作用的蛋白。目前,已经通过这种方法成功地筛选到了一些与CaM相结合的蛋白,从而为进一步研究CaM蛋白在生理环境下的作用提供有利条件。  相似文献   

11.
植物的钙调素亚型   总被引:4,自引:0,他引:4  
钙调素是一种高度保守的多功能Ca2 结合蛋白,在Ca2 信号转导途径中处于中心环节.近年来的研究表明,CaM亚型在植物中普遍存在,不同的CaM亚型与靶蛋白相互作用,它们的表达特性和生物学功能存在差异.该文介绍了植物 CaM亚型的研究现状和进展.  相似文献   

12.
谢畅 《生物磁学》2009,(2):346-349,354
钙调素(Calmodulin,CaM)是一个特别的对钙敏感的蛋白,在钙信号传导通路中扮演重要角色钙/钙调素依赖性蛋白激酶(Calcium/calmodulin-dependent kinases(CaMKs))与荷尔蒙、神经迷质及其他信号引起的细胞反应相关、作为重要的第二信使,钙/钙调素依赖的蛋白激酶Ⅱ(CaM—KⅡ)是一类在细咆中无所不在的表达的蛋白激酶,能维持细胞内的钙浓度在很低的水平,再增加后续的特定的钙激动刺激。钙/钙调素依赖的簧白激酶Ⅱ独特的全酶结构和自我调节的性质使其对短暂的钙信号和胞内钙的变化能做出延长反应:本文从结构、合成、细胞分布、反应底物、生理功能等方面介绍了钙/钙调素依赖的蛋白激酶Ⅱ的激活对细胞信号传导的作用。  相似文献   

13.
钙—钙调素信号系统与环境刺激   总被引:5,自引:1,他引:4  
植物抗逆研究已有很大进展,但传递各种外界刺激的信号通路仍未可知,目前已有一些研究发现很多环境刺激与钙-钙调素系统有关,Ca^2 信号系统是很重要的一种信号途径,CaM是目前已知的胞内Ca^2 信号受体中最重要的一种,参与了多种生理活动的调节,在热激领域中,研究者已提出Ca^2 -CaM系统可能参与了热激反应,在基因调节水平,转录水平,蛋白水平均有Ca^2 和CaM参与热激的证据,其它环境刺激也能引起植物体内Ca^2 和CaM的一系列变化,这为研究各种环境刺激可能的信号通路提供了基础和依据。  相似文献   

14.
陈娇娆  续旭  胡章立  杨爽 《植物研究》2022,42(4):713-720
盐胁迫对植物的生长和发育造成严重影响,其危害包括渗透胁迫、离子毒害等,严重损害了农业生产和粮食安全。在盐胁迫下,植物相关感受器接受刺激,使得Ca2+通过细胞膜以及细胞内钙库膜上打开的Ca2+通道进入细胞质基质,导致细胞质内Ca2+浓度升高,产生钙信号。钙离子作为重要的第二信使,在植物细胞内和细胞间传递信号,信号往下游传递,在不同生长和发育阶段引起植物一系列的生理响应来应对盐胁迫影响。钙信号主要通过钙调蛋白(CaM)、钙调素样蛋白(CML)、钙依赖性蛋白激酶(CDPK)、钙调磷酸酶B样蛋白(CBL)和CBL互作蛋白激酶(CIPK)感知并将特异的钙信号信息传递到下游;从而激活植物盐胁迫生理响应。本文主要综述植物如何感知盐胁迫刺激,以及钙信号产生与传导机制,并对该研究领域需解决的问题进行了展望。  相似文献   

15.
植物中解密Ca2+信号转导特异性的机制   总被引:4,自引:0,他引:4  
Ca^2+信号介导植物对外界信号的刺激反应,并调节多种生理过程。CBL是一种在植物中发现的Ca^2+结合蛋白,其靶蛋白为CIPK,现对CBL-CIPK信号转导系统及其如何解密Ca^2+信号转导特异性进行综述。  相似文献   

16.
植物转脂蛋白(LTPs)是多基因编码的蛋白家族,广泛分布于高等植物.虽然LTPs的确切功能至今仍不完全清楚,但它参与植物生物、非生物胁迫反应以及它的抗性功能已成为近年来的研究热点.关于LTPs功能的调节机制目前几乎一无所知.最近,从白菜中分离的钙调素结合蛋白-10(CaMBP-10)被鉴定为植物转脂蛋白家族成员,并且,体外实验证明钙调素(CaM)调节其脂质结合活性.为了深入了解转脂蛋白功能的调节机制,本文研究了CaMBP-10的磷酸化作用,发现CaMBP-10可被豌豆质膜内源性蛋白激酶磷酸化,钙离子(Ca2+)能刺激磷酸化,钙螯合剂EGTA以及CaM拮抗剂W-7和TFP均能显著抑制磷酸化.免疫印迹分析最终确定该激酶为CDPK家族成员.构建突变体进一步研究了CaMBP-10的磷酸化位点,发现其位于蛋白的C-末端区域,并与已确定的CaM结合位点重合.同时,分析结果表明CaM能抑制CaMBP-10的磷酸化.反之,CaMBP-10的磷酸化又能阻断其与CaM的结合,显示出两种调节方式相互竞争的特点.为深入研究磷酸化作用对CaMBP-10脂质结合活性的影响,构建突变体(Ser83Asp,Ser85Asp)以模拟磷酸化状态.实验结果显示,磷酸化作用能显著增强CaMBP-10的脂质结合活性,而且突变体的脂质结合活性不受CaM的影响.采用胶内磷酸化测定法(in-gelkinaseassay)研究了激酶的自磷酸化特点以及CaMBP-10对激酶自磷酸化的影响,发现CaMBP-10能激活激酶的自磷酸化,激酶的自磷酸化又能促进其对底物的磷酸化作用.这样,激酶的自磷酸化与底物的磷酸化形成一种"正反馈环"的调节模式.综合研究结果,本文首次证明了LTP受CaM结合和CDPK磷酸化的双重调节.而且,CaM结合位点与磷酸化位点的重合预示可能存在特殊的调节机制,以协同应答胞内的Ca2+信号.  相似文献   

17.
N-酰基高丝氨酸内酯(AHLs)是革兰氏阴性细菌群体感应系统(QS)中的胞间通讯信号分子。近年的研究表明AHLs可以调控植物生长发育及防卫反应,但其调控机制尚不清楚。本研究以拟南芥为材料,采用3-羰基辛酰基高丝氨酸内酯(3OC8-HSL)处理转水母发光蛋白基因的拟南芥幼根细胞,利用冷光仪检测3OC8-HSL对拟南芥根细胞中胞质游离Ca2+浓度([Ca2+]cyt)变化的影响,同时采用Ca2+专一性螯合剂EGTA和Ca2+通道抑制剂预处理转基因拟南芥根细胞,用全细胞膜片钳技术分析3OC8-HSL诱导拟南芥根细胞中[Ca2+]cyt升高的Ca2+来源。结果表明,3OC8-HSL可诱导拟南芥根细胞中[Ca2+]cyt瞬时升高。这种诱导效应可被EGTA、异搏定(verapamil)、LaCl3所抑制,但LiCl预处理对这种诱导效应无影响。膜片钳分析结果显示,3OC8-HSL可激活质膜Ca2+通道,增加胞外Ca2+内流。说明细菌AHLs可诱导植物Ca2+信号产生,且这种Ca2+信号主要源于胞外Ca2+内流,暗示Ca2+信使系统参与植物对细菌QS信号的响应。  相似文献   

18.
类钙调素(calmodulin-like protein,CML)是植物体内一类钙受体蛋白,介导Ca2+与下游靶蛋白的相互作用,在植物抗逆反应中发挥重要作用.探究茶树中CML蛋白在逆境胁迫中的功能,为进一步研究茶树CsCML24对逆境胁迫的响应机理提供理论依据.以龙井43一年生茶树扦插苗为材料,克隆得到类钙调蛋白基因C...  相似文献   

19.
钙离子(Ca2+)是调节突触前神经递质的胞吐释放的关键离子信号.作为胞内最普遍存在的钙离子感受器的钙调蛋白(CaM)被发现能通过与多种蛋白的相互作用,调控着突触小泡的生发、运输及再填充,从而传递胞内Ca2+浓度变化的信号,对神经递质的释放及突触电生理活动起到至关重要的调控作用.本文综述了CaM及其结合蛋白是如何参与对突触小泡的胞吐释放和胞吞恢复的调控,并探讨了其中可能的分子机制.  相似文献   

20.
Ca2+是植物体内重要的第二信使,当植物受到各种环境刺激时,细胞内的Ca2+浓度瞬间产生变化,并被Ca2+信号效应器识别,通过与下游的靶蛋白结合并调节其活性,参与调控植物各种生理活动。钙调素结合蛋白以依赖Ca2+或不依赖Ca2+的方式结合钙调素。对目前已经鉴定的植物钙调素结合蛋白结构特点进行了综述,并着重介绍了钙调素结合蛋白是如何参与调节植物对生物胁迫和非生物胁迫的反应,为提高作物抗病抗逆能力研究提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号