首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   3篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   3篇
  2009年   2篇
  2007年   3篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1993年   2篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
微囊藻毒素与自然水体中细菌VIVIFORM状态的相关性   总被引:2,自引:0,他引:2  
细菌VIVIFORM状态是直接关系到自然水体水质评价和环境保护的生态现象 ,其形成机理相当复杂 ,但环境胁迫是主要诱因。通过人为改变湖水中的微囊藻毒素 (MC LR)水平 ,对水体中蓝藻毒素与细菌VIVIFORM状态之间的相关性进行了分析。结果表明 ,较高的毒素水平对水体中细菌种群总量没有明显的影响 ,但能刺激VIVIFORM细菌转化成可培养状态 ,从而证实了自然水体中蓝藻毒素与水细菌VIVIFORM状态之间存在直接的相关性。  相似文献   
2.
微甘菊次生代谢产物的免疫学活性研究   总被引:1,自引:0,他引:1  
为了探讨微甘菊次生代谢产物的免疫学活性,用微甘菊水溶性和脂溶性提取物喂食小鼠,用流式细胞仪测定小鼠T淋巴细胞亚群的变化规律,分析微甘菊提取物的免疫学活性。结果显示,微甘菊水溶性和脂溶性提取物均能刺激小鼠CD4^ 和CD8^ 细胞的产生,与对照相比,CD4^ /CD8^ 比值均明显增加,水溶性提取物的效果更明显。微甘菊次生代谢产物中可能含有某些刺激动物免疫活性和提高抗癌能力的物质。  相似文献   
3.
肺炎克雷伯氏菌VBNC状态转化突变株的筛选与特性研究   总被引:1,自引:0,他引:1  
采用双亲本接合法对从文山湖富营养化水体中分离得到肺炎克雷伯氏菌进行Tn5转座子插入诱变,在含四环素和卡那霉素的LB培养基上获得接合子,利用饥饿冷冻高渗透压法对接合子进行细菌VBNC状态转化突变株的筛选和特性的研究。结果表明,带有卡那霉素基因的Tn5成功地插入到了肺炎克雷伯氏菌的染色体中,在双抗性培养基上获得约2.3×104 cell/mL的接合子,转座效率为6.58×10-4。对多个接合子和对照肺炎克雷伯氏菌的诱导、筛选及比较,发现KPQT-7是最快进入VBNC状态的突变株,该突变株在胁迫诱导9d后超过30%的细胞都进入了VBNC状态,而对照的肺炎克雷伯氏菌至少要在诱导21d后才大部分进入VBNC状态。在此基础上,对VBNC转化突变株KPQT-7作进一步的遗传学分析将会为细菌VBNC状态分子机理的研究奠定坚实的基础。  相似文献   
4.
对不同 Scenedesmus 品种的藻细胞从含镍水溶液(10mg/L)中累积金属镍的能力进行了分析,结果表明:藻细胞对镍的生物累积量表现出明显的品种差异性. Scenedesmus quadricauda FACHB 44 和 Scenedesmus quadricauda FACHB 506 表现出很强的累积能力(累积量达到5~6 mg Ni /g干重),而 Scenedesmus sp. FACHB 416 和 Scenedesmus sp. FACHB 489在相同条件对金属镍累积量要少得多(1~1.5 mg Ni /g干重).这种差异可能与不同品种藻细胞间的形态结构和生理特性是相关的.对 S. quadricauda FACHB 44 重金属抗性和累积能力进一步的分析表明, S. quadricauda FACHB 44用于含镍重金属废水处理是非常有效的,在高浓度(100 mg/L)的镍溶液中,藻细胞的最大累积量能达到(26.7 mg Ni/g 干重).对该藻细胞镍累积动力学分析发现:藻细胞对镍的生物累积包括一个快速的被动吸附过程(5 min, 结合70%的镍)和一个缓慢的耗能累积过程(2~3 h时间内的累积量占总量的20%~30%).与其他藻类相比, S. quadricauda FACHB 44对水溶液中镍的耗能累积量明显高于其他藻类.透射电子显微镜(TEM)和X射线能谱(EDX)分析结果均表明,藻细胞耗能累积的镍主要集中在原生质体中,尤以淀粉粒和染色质中为多.  相似文献   
5.
栅藻对水环境中镍的累积效应与机理分析   总被引:1,自引:0,他引:1  
对不同Scenedesmus品种的藻细胞从含镍水溶液 (10mg/L)中累积金属镍的能力进行了分析 ,结果表明 :藻细胞对镍的生物累积量表现出明显的品种差异性。ScenedesmusquadricaudaFACHB 4 4和ScenedesmusquadricaudaFACHB 5 0 6表现出很强的累积能力 (累积量达到 5~ 6mgNi /g干重 ) ,而Scenedesmussp .FACHB 4 16和Scenedesmussp .FACHB 4 89在相同条件对金属镍累积量要少得多 (1~ 1.5mgNi /g干重 )。这种差异可能与不同品种藻细胞间的形态结构和生理特性是相关的。对S .quadricaudaFACHB 4 4重金属抗性和累积能力进一步的分析表明 ,S .quadricaudaFACHB 4 4用于含镍重金属废水处理是非常有效的 ,在高浓度 (10 0mg/L)的镍溶液中 ,藻细胞的最大累积量能达到 (2 6 .7mgNi/g干重 )。对该藻细胞镍累积动力学分析发现 :藻细胞对镍的生物累积包括一个快速的被动吸附过程 (5min ,结合 70 %的镍 )和一个缓慢的耗能累积过程 (2~ 3h时间内的累积量占总量的 2 0 %~ 30 % )。与其他藻类相比 ,S .quadricaudaFACHB 4 4对水溶液中镍的耗能累积量明显高于其他藻类。透射电子显微镜(TEM)和X射线能谱 (EDX)分析结果均表明 ,藻细胞耗能累积的镍主要集中在原生质体中 ,尤以淀粉粒和染色质中为多。  相似文献   
6.
利用微藻油脂制备生物柴油因具有重要的战略意义而受到世界各国的重视,成为近年来的研究热点。利用微藻制备生物柴油具有生长周期短、易于大规模培养、能大量吸收CO2及不占用耕地等优点。但是,由于对藻类油脂合成代谢中的调节机制了解不多,导致微藻基因组研究相对滞后,极大地限制了微藻生物能源的大规模开发和利用。随着现代生物技术的发展,通过基因工程、代谢工程等方法调控微藻脂类的合成代谢,提高藻类含油量和生物量已成为可能。概述了微藻中油脂的合成代谢,归纳总结利用基因工程技术提高微藻油脂含量的研究进展,为获得含油量高的工程微藻及微藻制备生物柴油提供技术储备。  相似文献   
7.
裸藻(Euglena), 又称为眼虫, 是具有植物和动物双重特性的单细胞真核生物, 其细胞核具有间核性质, 叶绿体起源于二次共生, 具有不稳定性, 在胁迫条件下易丢失。因此, 裸藻是研究生物进化和叶绿体内共生的理想材料, 具有重要的科学价值。而且裸藻细胞富含多不饱和脂肪酸、氨基酸和维生素等多种营养物质, 能够积累很高含量的副淀粉和蜡酯, 既是一种高附加值的保健食品, 也是生产生物能源的优质原材料。目前, 关于裸藻基因功能的研究主要是采用生理生化的方法, 缺少有效的遗传操作技术, 裸藻基因工程改造的研究进展十分缓慢, 文章对裸藻遗传转化方法及其研究进展进行了详细综述, 以期为裸藻功能基因组学的研究和生物技术的开发提供参考。  相似文献   
8.
同步化培养后莱茵衣藻生物量和总RNA含量的变化   总被引:2,自引:0,他引:2  
为了探索莱茵衣藻经光/暗同步化培养后的细胞生长和总RNA的变化规律。本研究检测了16h光/8h暗同步化培养后莱茵衣藻的生物量和总RNA含量的变化规律。结果,在同步化培养结束后的前28h,莱茵衣藻的生物量呈现有节律的阶梯增长;在同步化培养结束后的28~48h,这种阶梯式增长方式逐步消失。在同步化培养结束后的前24h,总RNA含量呈现有节律的峰-谷-峰变化;在同步化培养结束后的24~48h,这种变化幅度逐步减小,节律周期也逐步缩短。对比同步化培养后莱茵衣藻生物量和总RNA含量的变化可以得出,同步化培养后莱茵衣藻的同步化节律仍然可以维持一定时间;但随着连续光培养时间的延长,这种节律逐步消失,通过测定生物量和总RNA含量的变化可以跟踪同步化培养后莱茵衣藻的同步化变化。  相似文献   
9.
水中病原微生物分子检测技术研究进展   总被引:5,自引:0,他引:5  
基于PCR方法的多种分子检测技术已广泛的应用于水体病原微生物的检测中。而以DNA芯片为代表的微型化、快速化手段将是未来检测技术的发展方向,可实现对病原微生物实时和快速的检测。新检测技术的发展有利于建立水体污染早期预警机制,同时,可靠的病原微生物检测方法可降低有害微生物对人类健康的影响。对水体病原微生物分子检测方法及其在水污染相关疾病风险控制中所扮演的重要角色进行阐述。  相似文献   
10.
陈娇娆  续旭  胡章立  杨爽 《植物研究》2022,42(4):713-720
盐胁迫对植物的生长和发育造成严重影响,其危害包括渗透胁迫、离子毒害等,严重损害了农业生产和粮食安全。在盐胁迫下,植物相关感受器接受刺激,使得Ca2+通过细胞膜以及细胞内钙库膜上打开的Ca2+通道进入细胞质基质,导致细胞质内Ca2+浓度升高,产生钙信号。钙离子作为重要的第二信使,在植物细胞内和细胞间传递信号,信号往下游传递,在不同生长和发育阶段引起植物一系列的生理响应来应对盐胁迫影响。钙信号主要通过钙调蛋白(CaM)、钙调素样蛋白(CML)、钙依赖性蛋白激酶(CDPK)、钙调磷酸酶B样蛋白(CBL)和CBL互作蛋白激酶(CIPK)感知并将特异的钙信号信息传递到下游;从而激活植物盐胁迫生理响应。本文主要综述植物如何感知盐胁迫刺激,以及钙信号产生与传导机制,并对该研究领域需解决的问题进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号