首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
Research Advances in the Main Ecological Functions of Root Exudates   总被引:2,自引:0,他引:2  
根系分泌物在植物根系-土壤-微生物互作过程及其生态反馈机制中发挥重要作用。在植物根际复杂网络互作过程中, 根系分泌物被认为是“根际对话”的媒介, 其在调控植物适应微生境、缓解根际养分竞争及构建根际微生物群落结构方面意义重大。该文结合国内外该领域主要研究成果, 综述了根系分泌物对植物生长、土壤微生物特性及土壤养分循环的影响, 并展望了未来根系分泌物的研究方向。  相似文献   

2.
植物根系对根际微环境扰动机制研究进展   总被引:1,自引:0,他引:1  
根际微环境是构建植物与土壤交流沟通的桥梁,也是植物遭受胁迫时优先作出响应的区域。植物根系作为根际的主要调控者,根构型和根系分泌物种类、数量的改变均可对根际微生物和土壤动物种群分布及其结构造成影响。然而,土壤动物的扰动、微生物的分解作用也可改善根际土壤特性,提高植物抗逆性及养分利用效率,从而促进植物根系生长。可见,植物根系-根际动物-根际微生物之间存在复杂的互作关系。本文从根际内、外微环境出发,分析了根际外植物根系对微环境的物理和化学扰动、根际内植物根系与微生物的互作扰动、根际内植物根系和土壤动物的物理扰动、以植物根系分泌物为介质的化学扰动等方面研究进展,在此基础上,论述了根际微环境主要影响因子之间的互作机制,并对该领域的研究方向进行了展望。  相似文献   

3.
土壤重金属镉(Cd)污染严重危害农产品安全生产,植物根际细菌在钝化土壤Cd和帮助作物抵御Cd胁迫方面发挥重要作用。本文首先概括在修复Cd污染土壤中得到广泛应用的植物根际细菌种类,并从根际细菌直接吸附Cd、调整土壤理化特性、调控土壤微生物群落和其他作用4方面阐述了植物根际细菌对Cd的钝化作用,其次从菌植互作角度阐述植物根系分泌物与根际细菌群落相互影响对土壤Cd的钝化作用。最后展望重金属胁迫下植物根际钝化Cd核心菌群的构建,以在新兴学科与技术的快速发展中探明植物根系-微生物互作体系的分子机制,深入开展植物根际细菌钝化修复重金属污染土壤的理论研究和实践。  相似文献   

4.
根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一“黑箱”的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。  相似文献   

5.
《植物生态学报》2014,38(3):298
根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一“黑箱”的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。  相似文献   

6.
植物根系分泌物对土壤污染修复的作用及影响机理   总被引:4,自引:0,他引:4  
王亚  冯发运  葛静  李勇  余向阳 《生态学报》2022,42(3):829-842
生物修复是一种经济环保的土壤修复技术。根系分泌物是利用生物修复污染土壤过程中的关键物质,也是植物与土壤微生物进行物质交换和信息传递的重要载体,在植物响应污染物胁迫中扮演重要角色。研究植物根系分泌物对土壤污染修复的作用和影响机理,是深入理解植物和微生物环境适应机制的重要途径,对促进生物修复污染土壤有重要指导意义。从污染物胁迫对根系分泌物的影响、根系分泌物对土壤污染物环境行为的影响、根系分泌物在调控污染土壤中根际微生物群落结构和多样性中发挥的作用等几个方面综述了根系分泌物对土壤污染修复的影响及内在机制。研究结果表明,根系分泌物在降低重金属对植物的毒性、加速有机污染物降解等方面有非常重要的作用。根系分泌物对土壤微生物的丰度和多样性均有显著影响,其与根际微生物互作在土壤污染物的消减中发挥了重要的调控作用。在此基础上,提出了以往研究中的不足,并对污染物胁迫下根系分泌物未来研究的方向和趋势进行了展望。  相似文献   

7.
植物根际微生物群落构建的研究进展   总被引:5,自引:0,他引:5  
植物根际是指植物根系与土壤的交界面,是根系自身生命活动和代谢对土壤影响最直接、最强烈的区域,其物理、化学和生物性质不同于土体土壤。在这个区域里,与植物发生相互作用的大量微生物,被称为根际微生物。根际微生物在植物的生长发育和植物病虫害的生物防治等方面都具有十分重要的意义。本文总结了根际微生物群落构建的研究现状,介绍了根际微生物的经典和最新的研究方法,包括根箱法、同位素技术以及高通量测序、菌群定量分析、高通量分离培养等方法在根际微生物研究中的应用,讨论了植物根系分泌物(碳水化物、氨基酸、黄酮类、酚类、激素及其信号物质)和土壤物理化学性质对根际微生物群落的影响,概述了根际微生物-植物的互作机制,以及根际微生物群落对植物的促生作用、提高植物抗逆性和抑制作用,并对根际微生物群落研究中存在的问题和未来发展方向进行了展望。  相似文献   

8.
近年来重金属污染等生态环境问题日益受到重视,而物理、化学修复方法存在的诸如成本高、二次污染等问题,使得利用植物、微生物等进行联合治理成为环境修复的重要手段。植物根系分泌物作为植物与土壤进行营养和信息交流的重要媒介,不但对植物的生长具有重要作用,其在污染及沙化土壤修复中作用的研究也得以广泛开展。本文对根系分泌物的组成、分泌机制进行了阐述,并对其在植物吸收重金属、化感作用、植物根系与根际微生物互作、改变土壤理化性质等过程中的作用及机理进行了总结。此外,本文还对利用根系分泌物和根际微生物在生态环境治理中的应用现状、面临的难题及未来的发展等进行了讨论。希望本文可为基于植物与微生物进行的环境修复技术的实际应用提供理论支撑。  相似文献   

9.
土壤环境下的根际微生物和植物互作关系研究进展   总被引:1,自引:0,他引:1  
植物根系、土壤、根际微生物以及根际范围内其他因子等组成了根际微生态系统,在根际微生态系统中的不同组分之间存在着广泛的相互作用,其中以根系-土壤-微生物之间的相互作用网络最为复杂,同时也对整个根际系统的稳定和发展有着至关重要的影响。综述了近年来国内外对于土壤环境中根际互作关系研究的进展,探讨了土壤环境对植物和根际微生物群落的影响,植物如何调控根际微生物群落的组装和稳定过程,以及根际微生物对植物生长发育、病原菌防卫和抗逆性的调控作用等,分别从土壤环境、宿主植物和根际微生物三个层面,分析了它们在根际互作关系中的角色和作用机制,以期为农业生产和环境保护提供一定指导意义和借鉴作用。  相似文献   

10.
伊贝根际微生物   总被引:3,自引:0,他引:3  
邱并生 《微生物学通报》2010,37(8):1252-1252
<正>土壤微生物是土壤中最活跃的因子,一方面是土壤天然有机体的转化者,另一方面是土壤养分的源和库,与植物营养和土壤肥力密切相关,在土壤物质和能量循环转化过程中起着重要作用。在植物的整个生长期间,根系进行着活跃的代谢作用,向根外不断分泌有机物质,这些分泌物是根际微生物的重要营养和能量来源,其成分和数量影响着根际微生物的种类和繁殖。根际微生物的数量、活性和群落结构及其变化直接影响到植物吸收水分和养分。因此,植物、土壤和微生物之间存在着相互依赖、相互作用的复杂的三边关系[1-2]。  相似文献   

11.
我国土壤重金属污染问题日益突出.作为一种绿色、安全的生物修复技术,植物修复技术备受关注.根系分泌物作为植物-土壤-微生物三者物质交换与信息传递的重要载体,是植物响应外界胁迫的重要生理生态指征,在植物修复过程中发挥关键作用.研究表明,根系分泌物能够有效调控根际微环境,提升植物抗逆能力,影响重金属在根际微域中的环境行为.传...  相似文献   

12.
Soil microorganisms may play an important role in plant Fe uptake from soils with low Fe bioavailability, but there is little direct experimental evidence to date. We grew red clover, an Fe-efficient leguminous plant, in a calcareous soil to investigate the role of soil microbial activity in plant Fe uptake. Compared with plants grown in non-sterlie (NS) grown plants, growth and Fe content of the sterile(s) grown plants was significantly inhibited, but was improved by foliar application of Fe EDTA, indicating that soil microbial activity should play an important role in plant Fe acquisition. When soil solution was incubated with phenolic root exudates from Fe-deficient red clover, a few microbial species thrived while growth of the rest was inhibited, suggesting that the Fe-deficient (-Fe) root exudates selectively influenced the rhizosphere's microbial community. Eighty six per cent of the phenolic-tolerant microbes could produce siderophore [the Fe(III) chelator] under -Fe conditions, and 71% could secrete auxin-like compounds. Interestingly, the synthetic and microbial auxins (MAs) significantly enhanced the Ferric reduction system, suggesting that MAs, in addition to siderophores, are important to plant Fe uptake. Finally, plant growth and Fe uptake in sterilized soil were significantly increased by rhizobia inoculation. Root Fe-EDTA reductase activity in the -Fe plant was significantly enhanced by rhizobia infection, and the rhizobia could produce auxin but not siderophore under Fe-limiting conditions, suggesting that the contribution of nodulating rhizobia to plant Fe uptake can be at least partially attributed to stimulation of turbo reductase activity through nodule formation and auxin production in the rhizosphere. Based on these observations, we propose as a model that root exudates from -Fe plants selectively influence the rhizosphere microbial community, and the microbes in turn favour plant Fe acquisition by producing siderophores and auxins.  相似文献   

13.
The rhizosphere is of central importance not only for plant nutrition, health and quality but also for microorganism-driven carbon sequestration, ecosystem functioning and nutrient cycling in terrestrial ecosystems. A multitude of biotic and abiotic factors are assumed to influence the structural and functional diversity of microbial communities in the rhizosphere. In this review, recent studies on the influence of the two factors, plant species and soil type, on rhizosphere-associated microbial communities are discussed. Root exudates and the response of microorganisms to the latter as well as to root morphology were shown to shape rhizosphere microbial communities. All studies revealed that soil is the main reservoir for rhizosphere microorganisms. Many secrets of microbial life in the rhizosphere were recently uncovered due to the enormous progress in molecular and microscopic tools. Physiological and molecular data on the factors that drive selection processes in the rhizosphere are presented here. Furthermore, implications for agriculture, nature conservation and biotechnology will also be discussed.  相似文献   

14.
根分泌物对根际矿物营养及根际微生物的效应   总被引:34,自引:2,他引:32  
综述了根系分泌物对植物生长的生理生态学效应,并就根系分泌物的定义、产生机制、组成成分和影响因素等方面进行了讨论。指出根系分泌物在缓解低矿物营养胁迫对植株造成的伤害及决定根际微生物的种群密度和数量方面起着重要的作用;根系分泌物的产生机制多样,组成成分复杂,影响因素繁多。对根分泌物的深入研究有助于进一步了解植物体与土壤间进行的生理生化过程及其调控机制。  相似文献   

15.
Plant-driven selection of microbes   总被引:2,自引:0,他引:2  
  相似文献   

16.
The role of root exudates and allelochemicals in the rhizosphere   总被引:62,自引:1,他引:61  
Bertin  Cecile  Yang  Xiaohan  Weston  Leslie A. 《Plant and Soil》2003,256(1):67-83
Plant roots serve a multitude of functions in the plant including anchorage, provision of nutrients and water, and production of exudates with growth regulatory properties. The root–soil interface, or rhizosphere, is the site of greatest activity within the soil matrix. Within this matrix, roots affect soil structure, aeration and biological activity as they are the major source of organic inputs into the rhizosphere, and are also responsible for depletion of large supplies of inorganic compounds. Roots are very complicated morphologically and physiologically, and their metabolites are often released in large quantities into the soil rhizosphere from living root hairs or fibrous root systems. Root exudates containing root-specific metabolites have critical ecological impacts on soil macro and microbiota as well as on the whole plant itself. Through the exudation of a wide variety of compounds, roots impact the soil microbial community in their immediate vicinity, influence resistance to pests, support beneficial symbioses, alter the chemical and physical properties of the soil, and inhibit the growth of competing plant species. In this review, we outline recent research on root exudation and the role of allelochemicals in the rhizosphere by studying the case of three plants that have been shown to produce allelopathic root exudates: black walnut, wheat and sorghum  相似文献   

17.
A high percentage of photosynthetically assimilated carbon is released into soil via root exudates, which are acknowledged as the most important factor for the development of microbial rhizosphere communities. As quality and quantity of root exudates are dependent on plant genotype, the genetic engineering of plants might also influence carbon partitioning within the plant and thus microbial rhizosphere community structure. In this study, the carbon allocation patterns within the plant-rhizosphere system of a genetically modified amylopectin-accumulating potato line (Solanum tuberosum L.) were linked to microbial degraders of root exudates under greenhouse conditions, using (13)C-CO(2) pulse-chase labelling in combination with phospholipid fatty acid (PLFA) analysis. In addition, GM plants were compared with the parental cultivar as well as a second potato cultivar obtained by classical breeding. Rhizosphere samples were obtained during young leaf developmental and flowering stages. (13)C allocation in aboveground plant biomass, water-extractable organic carbon, microbial biomass carbon and PLFA as well as the microbial community structure in the rhizosphere varied significantly between the natural potato cultivars. However, no differences between the GM line and its parental cultivar were observed. Besides the considerable impact of plant cultivar, the plant developmental stage affected carbon partitioning via the plant into the rhizosphere and, subsequently, microbial communities involved in the transformation of root exudates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号