首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new system to recognize protein coding genes in the coronavirus genomes, specially suitable for the SARS-CoV genomes, has been proposed in this paper. Compared with some existing systems, the new program package has the merits of simplicity, high accuracy, reliability, and quickness. The system ZCURVE_CoV has been run for each of the 11 newly sequenced SARS-CoV genomes. Consequently, six genomes not annotated previously have been annotated, and some problems of previous annotations in the remaining five genomes have been pointed out and discussed. In addition to the polyprotein chain ORFs 1a and 1b and the four genes coding for the major structural proteins, spike (S), small envelop (E), membrane (M), and nuleocaspid (N), respectively, ZCURVE_CoV also predicts 5-6 putative proteins in length between 39 and 274 amino acids with unknown functions. Some single nucleotide mutations within these putative coding sequences have been detected and their biological implications are discussed. A web service is provided, by which a user can obtain the annotated result immediately by pasting the SARS-CoV genome sequences into the input window on the web site (http://tubic.tju.edu.cn/sars/). The software ZCURVE_CoV can also be downloaded freely from the web address mentioned above and run in computers under the platforms of Windows or Linux.  相似文献   

2.
BACKGROUND: Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus (SARS-CoV). It is an enveloped, single-stranded, plus-sense RNA virus with a genome of approximately 30 kb. The structural proteins E, M and N of SARS-CoV play important roles during host cell entry and viral morphogenesis and release. Therefore, we have studied whether expression of these structural proteins can be down-regulated using an antisense technique. METHODS: Vero E6 cells were transfected with plasmid constructs containing exons of the SARS-CoV structural protein E, M or N genes or their exons in frame with the reporter protein EGFP. The transfected cell cultures were treated with antisense phosphorothioated oligonucleotides (antisense PS-ODN, 20mer) or a control oligonucleotide by addition to the culture medium. RESULTS: Among a total of 26 antisense PS-ODNs targeting E, M and N genes, we obtained six antisense PS-ODNs which could sequence-specifically reduce target genes expression by over 90% at the concentration of 50 microM in the cell culture medium tested by RT-PCR. The antisense effect was further proved by down-regulating the expression of the fusion proteins containing the structural proteins E, M or N in frame with the reporter protein EGFP. In Vero E6 cells, the antisense effect was dependent on the concentrations of the antisense PS-ODNs in a range of 0-10 microM or 0-30 microM. CONCLUSIONS: The antisense PS-ODNs are effective in downregulation of SARS. The findings indicate that antisense knockdown of SARS could be a useful strategy for treatment of SARS, and could also be suitable for studies of the pathological function of SARS genes in a cellular model system.  相似文献   

3.
用SARS冠状病毒全基因组芯片杂交方法分析SARS-CoV   总被引:3,自引:1,他引:2  
为从临床样品中检测和分析SARSCoV病毒打基础,并为分析SARSCoV病毒的复制和转录等机理提供一种有效方法。以SARS冠状病毒TOR2株序列作为标准设计和制备一种覆盖SARS冠状病毒全基因组的寡聚核苷酸芯片,探针长度为70nt,每相邻的探针序列重复25nt,共660条。用该芯片分析了细胞培养的SARSCoV病毒总RNA、7个SARSCoV病毒的基因克隆片段。对RNA样品用随机引物进行反转录PCR获得cDNA。对DNA用随机引物扩增和dUTPcy3标记。结果用这种芯片杂交检测SARSCoV病毒RNA可见阳性信号呈全基因组分布,并且有多处连续的阳性信号点;用正常人的白细胞RNA为对照,杂交未出现明显阳性信号。检测7个SARSCoV病毒基因克隆片段,在该片段相应的探针区段出现连续阳性信号点。这种方法可有效地检测和分析样品中SARS冠状病毒全基因组的信息。  相似文献   

4.
Ying W  Hao Y  Zhang Y  Peng W  Qin E  Cai Y  Wei K  Wang J  Chang G  Sun W  Dai S  Li X  Zhu Y  Li J  Wu S  Guo L  Dai J  Wang J  Wan P  Chen T  Du C  Li D  Wan J  Kuai X  Li W  Shi R  Wei H  Cao C  Yu M  Liu H  Dong F  Wang D  Zhang X  Qian X  Zhu Q  He F 《Proteomics》2004,4(2):492-504
Recently, a new coronavirus was isolated from the lung tissue of autopsy sample and nasal/throat swabs of the patients with Severe Acute Respiratory Syndrome (SARS) and the causative association with SARS was determined. To reveal further the characteristics of the virus and to provide insight about the molecular mechanism of SARS etiology, a proteomic strategy was utilized to identify the structural proteins of SARS coronavirus (SARS-CoV) isolated from Vero E6 cells infected with the BJ-01 strain of the virus. At first, Western blotting with the convalescent sera from SARS patients demonstrated that there were various structural proteins of SARS-CoV in the cultured supernatant of virus infected-Vero E6 cells and that nucleocaspid (N) protein had a prominent immunogenicity to the convalescent sera from the patients with SARS, while the immune response of spike (S) protein probably binding with membrane (M) glycoprotein was much weaker. Then, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate the complex protein constituents, and the strategy of continuous slicing from loading well to the bottom of the gels was utilized to search thoroughly the structural proteins of the virus. The proteins in sliced slots were trypsinized in-gel and identified by mass spectrometry. Three structural proteins named S, N and M proteins of SARS-CoV were uncovered with the sequence coverage of 38.9, 93.1 and 28.1% respectively. Glycosylation modification in S protein was also analyzed and four glycosylation sites were discovered by comparing the mass spectra before and after deglycosylation of the peptides with PNGase F digestion. Matrix-assisted laser desorption/ionization-mass spectrometry determination showed that relative molecular weight of intact N protein is 45 929 Da, which is very close to its theoretically calculated molecular weight 45 935 Da based on the amino acid sequence deduced from the genome with the first amino acid methionine at the N-terminus depleted and second, serine, acetylated, indicating that phosphorylation does not happen at all in the predicted phosphorylation sites within infected cells nor in virus particles. Intriguingly, a series of shorter isoforms of N protein was observed by SDS-PAGE and identified by mass spectrometry characterization. For further confirmation of this phenomenon and its related mechanism, recombinant N protein of SARS-CoV was cleaved in vitro by caspase-3 and -6 respectively. The results demonstrated that these shorter isoforms could be the products from cleavage of caspase-3 rather than that of caspase-6. Further, the relationship between the caspase cleavage and the viral infection to the host cell is discussed.  相似文献   

5.
A large number of complete microorganism genomes has been sequenced and submitted to the public database and then incorporated into our complete genome database, Genome Information Broker (GIB, http://gib.genes.nig.ac.jp/). However, when comparative genomics is carried out, researchers must be aware that there are protein-coding genes not confirmed by homology or motif search and that reliable protein-coding genes are missing. Therefore, we developed a protocol (Gene Trek in Prokaryote Space, GTPS) for finding possible protein-coding genes in bacterial genomes. GTPS assigns a degree of reliability to predicted protein-coding genes. We first systematically applied the protocol to the complete genomes of all 123 bacterial species and strains that were publicly available as of July 2003, and then to those of 183 species and strains available as of September 2004. We found a number of incorrect genes and several new ones in the genome data in question. We also found a way to estimate the total number of orthologous genes in the bacterial world.  相似文献   

6.
Severe acute respiratory syndrome (SARS) was discovered during a recent global outbreak of atypical pneumonia. A number of immunologic and molecular studies of the clinical samples led to the conclusion that a novel coronavirus (SARS-CoV) was associated with the outbreak. Later, a SARS resequencing GeneChip was developed by Affymetrix to characterize the complete genome of SARS-CoV on a single GeneChip. The present study was carried out to evaluate the performance of SARS resequencing GeneChips. Two human SARS-CoV strains (CDC#200301157 and Urbani) were resequenced by the SARS GeneChips. Five overlapping PCR amplicons were generated for each strain and hybridized with these GeneChips. The successfully hybridized GeneChips generated nucleotide sequences of nearly complete genomes for the two SARS-CoV strains with an average call rate of 94.6%. Multiple alignments of nucleotide sequences obtained from SARS GeneChips and conventional sequencing revealed full concordance. Furthermore, the GeneChip-based analysis revealed no additional polymorphic sites. The results of this study suggest that GeneChip-based genome characterization is fast and reproducible. Thus, SARS resequencing GeneChips may be employed as an alternate tool to obtain genome sequences of SARS-CoV strains pathogenic for humans in order to further understand the transmission dynamics of these viruses.  相似文献   

7.
Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of possible functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations that predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes that were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologs in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.  相似文献   

8.
9.
Before the SARS outbreak only two human coronaviruses (HCoV) were known: HCoV-OC43 and HCoV-229E. With the discovery of SARS-CoV in 2003, a third family member was identified. Soon thereafter, we described the fourth human coronavirus (HCoV-NL63), a virus that has spread worldwide and is associated with croup in children. We report here the complete genome sequence of two HCoV-NL63 clinical isolates, designated Amsterdam 57 and Amsterdam 496. The genomes are 27,538 and 27,550 nucleotides long, respectively, and share the same genome organization. We identified two variable regions, one within the 1a and one within the S gene, whereas the 1b and N genes were most conserved. Phylogenetic analysis revealed that HCoV-NL63 genomes have a mosaic structure with multiple recombination sites. Additionally, employing three different algorithms, we assessed the evolutionary rate for the S gene of group Ib coronaviruses to be approximately 3 x 10(-4) substitutions per site per year. Using this evolutionary rate we determined that HCoV-NL63 diverged in the 11th century from its closest relative HCoV-229E.  相似文献   

10.
Severe acute respiratory syndrome (SARS) was discovered during a recent global outbreak of atypical pneumonia. A number of immunologic and molecular studies of the clinical samples led to the conclusion that a novel coronavirus (SARS-CoV) was associated with the outbreak. Later, a SARS resequencing GeneChip was developed by Affymetrix to characterize the complete genome of SARS-CoV on a single GeneChip. The present study was carried out to evaluate the performance of SARS resequencing GeneChips. Two human SARS-CoV strains (CDC#200301157 and Urbani) were resequenced by the SARS GeneChips. Five overlapping PCR amplicons were generated for each strain and hybridized with these GeneChips. The successfully hybridized GeneChips generated nucleotide sequences of nearly complete genomes for the two SARS-CoV strains with an average call rate of 94.6%. Multiple alignments of nucleotide sequences obtained from SARS GeneChips and conventional sequencing revealed full concordance. Furthermore, the GeneChip-based analysis revealed no additional polymorphic sites. The results of this study suggest that GeneChip-based genome characterization is fast and reproducible. Thus, SARS resequencing GeneChips may be employed as an alternate tool to obtain genome sequences of SARS-CoV strains pathogenic for humans in order to further understand the transmission dynamics of these viruses.  相似文献   

11.
A novel coronavirus, the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), was identified as the causative agent of SARS. The profile of specific antibodies to individual proteins of the virus is critical to the development of vaccine and diagnostic tools. In this study, 13 recombinant proteins associated with four structural proteins (S, E, M and N) and five putative uncharacterized proteins (3a, 3b, 6, 7a and 9b) of the SARS-CoV were prepared and used for screening and monitoring their specific IgG antibodies in SARS patient sera by protein microarray. Antibodies to proteins S, 3a, N and 9b were detected in the sera from convalescent-phase SARS patients, whereas those to proteins E, M, 3b, 6 and 7a were undetected. In the detectable specific antibodies, anti-S and anti-N were dominant and could persist in the sera of SARS patients until week 30. Among the rabbit antisera to recombinant proteins S3, N, 3a and 9b, only anti-S3 serum showed significant neutralizing activity to the SARS-CoV infection in Vero E6 cells. The results suggest (1) that anti-S and anti-N antibodies are diagnostic markers and in particular that S3 is immunogenic and therefore is a good candidate as a subunit vaccine antigen; and (2) that, from a virus structure viewpoint, the presence in some human sera of antibodies reacting with two recombinant polypeptides, 3a and 9b, supports the hypothesis that they are synthesized during the virus cycle.  相似文献   

12.
Homma K  Fukuchi S  Kawabata T  Ota M  Nishikawa K 《Gene》2002,294(1-2):25-33
Pseudogenes are open reading frames (ORFs) encoding dysfunctional proteins with high homology to known protein-coding genes. Although pseudogenes were reported to exist in the genomes of many eukaryotes and bacteria, no systematic search for pseudogenes in the Escherichia coli genome has been carried out. Genome comparisons of E. coli strains K-12 and O157 revealed that many protein-coding sequences have prematurely terminated orthologs encoding unstable proteins. To systematically screen for pseudogenes, we selected ORFs generated by premature termination of the orthologous protein-coding genes and subsequently excluded those possibly arising from sequence errors. Lastly we eliminated those with close homologs in this and other species, as these shortened ORFs may actually have functions. The process produced 95 and 101 pseudogene candidates in K-12 and O157, respectively. The assigned three-dimensional structures suggest that most of the encoded proteins cannot fold properly and thus are dysfunctional, indicating that they are probably pseudogenes. Therefore, the existence of a significant number of probable pseudogenes in E. coli is predicted, awaiting experimental verification. Most of them were found to be genes with paralogs or horizontally transferred genes or both. We suggest that pseudogenes constitute a small fraction of the genomes of free-living bacteria in general, reflecting the faster elimination than production of pseudogenes.  相似文献   

13.
本研究通过RT-PCR反应获得了SARS冠状病毒核衣壳蛋白(N)和膜蛋白(E)基因,将n基因和e基因克 隆到大肠杆菌表达载体pGEX-KG上,并在大肠杆菌中以可溶形式获得高效表达,表达产物经亲和层析纯化。重 组蛋白N与SARS病毒抗体呈现特异性的反应,为进一步研究SARS病毒感染免疫应答机制和早期诊断奠定基础  相似文献   

14.
Yuan X  Shan Y  Yao Z  Li J  Zhao Z  Chen J  Cong Y 《Molecules and cells》2006,21(2):186-191
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondria-specific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.  相似文献   

15.
16.
The complete genome of severe acute respiratory syndrome coronavirus (SARS-CoV) reveals the existence of putative proteins unique to SARS-CoV. Identification of their function facilitates a mechanistic understanding of SARS infection and drug development for its treatment. The sequence of the majority of these putative proteins has no significant similarity to those of known proteins, which complicates the task of using sequence analysis tools to probe their function. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to SARS-CoV proteins. Testing results indicate that SVM is able to predict the functional class of 73% of the known SARS-CoV proteins with available sequences and 67% of 18 other novel viral proteins. A combination of the sequence comparison method BLAST and SVMProt can further improve the prediction accuracy of SMVProt such that the functional class of two additional SARS-CoV proteins is correctly predicted. Our study suggests that the SARS-CoV genome possibly contains a putative voltage-gated ion channel, structural proteins, a carbon-oxygen lyase, oxidoreductases acting on the CH-OH group of donors, and an ATP-binding cassette transporter. A web version of our software, SVMProt, is accessible at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi .  相似文献   

17.
The genomes of sheeppox and goatpox viruses   总被引:34,自引:0,他引:34       下载免费PDF全文
Sheeppox virus (SPPV) and goatpox virus (GTPV), members of the Capripoxvirus genus of the Poxviridae, are etiologic agents of important diseases of sheep and goats in northern and central Africa, southwest and central Asia, and the Indian subcontinent. Here we report the genomic sequence and comparative analysis of five SPPV and GTPV isolates, including three pathogenic field isolates and two attenuated vaccine viruses. SPPV and GTPV genomes are approximately 150 kbp and are strikingly similar to each other, exhibiting 96% nucleotide identity over their entire length. Wild-type genomes share at least 147 putative genes, including conserved poxvirus replicative and structural genes and genes likely involved in virulence and host range. SPPV and GTPV genomes are very similar to that of lumpy skin disease virus (LSDV), sharing 97% nucleotide identity. All SPPV and GTPV genes are present in LSDV. Notably in both SPPV and GTPV genomes, nine LSDV genes with likely virulence and host range functions are disrupted, including a gene unique to LSDV (LSDV132) and genes similar to those coding for interleukin-1 receptor, myxoma virus M003.2 and M004.1 genes (two copies each), and vaccinia virus F11L, N2L, and K7L genes. The absence of these genes in SPPV and GTPV suggests a significant role for them in the bovine host range. SPPV and GTPV genomes contain specific nucleotide differences, suggesting they are phylogenetically distinct. Relatively few genomic changes in SPPV and GTPV vaccine viruses account for viral attenuation, because they contain 71 and 7 genomic changes compared to their respective field strains. Notable genetic changes include mutation or disruption of genes with predicted functions involving virulence and host range, including two ankyrin repeat proteins in SPPV and three kelch-like proteins in GTPV. These comparative genomic data indicate the close genetic relationship among capripoxviruses, and they suggest that SPPV and GTPV are distinct and likely derived from an LSDV-like ancestor.  相似文献   

18.
《Genomics》2020,112(5):3226-3237
A global emergency due to the COVID-19 pandemic demands various studies related to genes and genomes of the SARS-CoV2. Among other important proteins, the role of accessory proteins are of immense importance in replication, regulation of infections of the coronavirus in the hosts. The largest accessory protein in the SARS-CoV2 genome is ORF3a which modulates the host response to the virus infection and consequently it plays an important role in pathogenesis. In this study, an attempt is made to decipher the conservation of nucleotides, dimers, codons and amino acids in the ORF3a genes across thirty-two genomes of Indian patients. ORF3a gene possesses single and double point mutations in Indian SARS-CoV2 genomes suggesting the change of SARS-CoV2's virulence property in Indian patients. We find that the parental origin of the ORF3a gene over the genomes of SARS-CoV2 and Pangolin-CoV is same from the phylogenetic analysis based on conservation of nucleotides and so on. This study highlights the accumulation of mutation on ORF3a in Indian SARS-CoV2 genomes which may provide the designing therapeutic approach against SARS-CoV2.  相似文献   

19.
Since the mid-1990s, lethal infections of koi herpesvirus (KHV) have been spreading, threatening the worldwide production of common carp and koi (both Cyprinus carpio). The complete genome sequences of three KHV strains from Japan, the United States, and Israel revealed a 295-kbp genome containing a 22-kbp terminal direct repeat. The finding that 15 KHV genes have clear homologs in the distantly related channel catfish virus (ictalurid herpesvirus 1) confirms the proposed place of KHV in the family Herpesviridae, specifically in the branch with fish and amphibian hosts. KHV thus has the largest genome reported to date for this family. The three strains were interpreted as having arisen from a wild-type parent encoding 156 unique protein-coding genes, 8 of which are duplicated in the terminal repeat. In each strain, four to seven genes from among a set of nine are fragmented by frameshifts likely to render the encoded proteins nonfunctional. Six of the affected genes encode predicted membrane glycoproteins. Frameshifts or other mutations close to the 3' ends of coding sequences were identified in a further six genes. The conclusion that at least some of these mutations occurred in vivo prompts the hypothesis that loss of gene functions might be associated with emergence of the disease and provides a basis for further investigations into the molecular epidemiology of the virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号