首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Pluripotent embryonic stem (ES) cells are the most versatile cells, with the potential to differentiate into all types of cell lineages including neural precursor cells (NPCs), which can be expanded in large numbers for significant periods of time to provide a reliable cell source for transplantation in neurodegenerative disorders such as Parkinson’s disease (PD). In the present study, we used the MESPU35 mouse ES cell line, which expresses enhanced green fluorescent protein that enables one to distinguish between transplanted cells and cells of host origin. Embryoid bodies (EBs) were formed and were induced to NPCs in N2 selection medium plus fibronectin. Praxiology and immunohistochemistry methods were used to observe the survival, differentiation, and therapeutic effect of NPCs after grafted into the striatum of PD rats. We found that mouse ESc were differentiated into nestin-positive NPCs 6 days after the EBs formed and cultured in the N2 selection medium. The number of survival NPCs was increased significantly by fibronectin. About 23.76 ± 2.29% of remaining cells were tyrosine hydroxylase (TH)-positive 12 days after NPCs were cultured in N2 selective medium. The survival rates of NPCs were 2.10 ± 0.41% and about 90.90 ± 3.00% of the engrafted NPCs were TH-positive 6 weeks after transplantation into the striatum of PD rats. The rotation of PD rats was relieved 3 weeks after the NPCs transplantation and this effect was kept for at least 6 weeks. It suggests that most of the survival NPCs derived from ES cells differentiated into TH-positive neurons after grafted into the striatum of PD rats, which produces therapeutic effect on PD.  相似文献   

2.
Human embryonic stem (ES) cells have the capacity for self-renewal and are able to differentiate into any cell type. However, obtaining high-efficient neural differentiation from human ES cells remains a challenge. This study describes an improved 4-stage protocol to induce a human ES cell line derived from a Chinese population to differentiate into neural cells. At the first stage, embryonic bodies (EBs) were formed in a chemically-defined neural inducing medium rather than in traditional serum or serum-replacement medium. At the second stage, rosette-like structures were formed. At the third stage, the rosette-like structures were manually selected rather than enzymatically digested to form floating neurospheres. At the fourth stage, the neurospheres were further differentiated into neurons. The results show that, at the second stage, the rate of the formation of rosette-like structures from EBs induced by noggin was 88+/-6.32%, higher than that of retinoic acid 55+/-5.27%. Immunocytochemistry staining was used to confirm the neural identity of the cells. These results show a major improvement in obtaining efficient neural differentiation of human ES cells.  相似文献   

3.
Non-human primate (NHP) embryonic stem (ES) cells show unlimited proliferative capacities and a great potential to generate multiple cell lineages. These properties make them an ideal resource both for investigating early developmental processes and for assessing their therapeutic potential in numerous models of degenerative diseases. They share the same markers and the same properties with human ES cells, and thus provide an invaluable transitional model that can be used to address the safety issues related to the clinical use of human ES cells. Here, we review the available information on the derivation and the specific features of monkey ES cells. We comment on the capacity of primate ES cells to differentiate into neural lineages and the current protocols to generate self-renewing neural stem cells. We also highlight the signalling pathways involved in the maintenance of these neural cell types. Finally, we discuss the potential of monkey ES cells for neuronal differentiation.  相似文献   

4.
Mouse embryonic stem (ES) cells can be differentiated into neural lineage cells, but the differentiation efficiency remains low. This study revealed two important factors that influence the neural differentiation efficiency of mouse ES cells: the first is the quality of embryonic bodies (EBs); good quality of EBs consistently originated from a suspension culture of 1 × 105 ES cells/ml serum-free chemically defined neural inducing medium and they exhibited a smooth round shape, with a dark central region surrounded by a light band. Such EBs are capable of attaining high neural differentiation efficiency. However, poor quality EBs originated from a suspension culture of 1 × 106 ES cells/ml serum-free chemically defined neural inducing medium and exhibited an irregular shape or adhered to the bottom of the dish; they displayed low neural differentiation efficiency. The second factor is the seeding density of EBs: a low seeding density (5 EBs/cm2) induced cells to differentiate into a more caudalized subtypes compared to the cells obtained from high seeding density (20 EBs/cm2). These findings provided fresh insight into the neural induction of mouse ES cells.  相似文献   

5.
Differentiation of monkey embryonic stem cells into neural lineages   总被引:5,自引:0,他引:5  
Embryonic stem (ES) cells are self-renewing, pluripotent, and capable of differentiating into all of the cell types found in the adult body. Therefore, they have the potential to replace degenerated or damaged cells, including those in the central nervous system. For ES cell-based therapy to become a clinical reality, translational research involving nonhuman primates is essential. Here, we report monkey ES cell differentiation into embryoid bodies (EBs), neural progenitor cells (NPCs), and committed neural phenotypes. The ES cells were aggregated in hanging drops to form EBs. The EBs were then plated onto adhesive surfaces in a serum-free medium to form NPCs and expanded in serum-free medium containing fibroblast growth factor (FGF)-2 before neural differentiation was induced. Cells were characterized at each step by immunocytochemistry for the presence of specific markers. The majority of cells in complex/cystic EBs expressed antigens (alpha-fetal protein, cardiac troponin I, and vimentin) representative of all three embryonic germ layers. Greater than 70% of the expanded cell populations expressed antigenic markers (nestin and musashi1) for NPCs. After removal of FGF-2, approximately 70% of the NPCs differentiated into neuronal phenotypes expressing either microtubule-associated protein-2C (MAP2C) or neuronal nuclear antigen (NeuN), and approximately 28% differentiated into glial cell types expressing glial fibrillary acidic protein. Small populations of MAP2C/NeuN-positive cells also expressed tyrosine hydroxylase (approximately 4%) or choline acetyltransferase (approximately 13%). These results suggest that monkey ES cells spontaneously differentiate into cells of all three germ layers, can be induced and maintained as NPCs, and can be further differentiated into committed neural lineages, including putative neurons and glial cells.  相似文献   

6.
ES cell neural differentiation reveals a substantial number of novel ESTs   总被引:3,自引:0,他引:3  
We have used a method for synchronously differentiating murine embryonic stem (ES) cells into functional neurons and glia in culture. Using subtractive hybridization we isolated approximately 1200 cDNA clones from ES cell cultures at the neural precursor stage of neural differentiation. Pilot studies indicated that this library is a good source of novel neuro-embryonic cDNA clones. We therefore screened the entire library by single-pass sequencing. Characterization of 604 non-redundant cDNA clones by BLAST revealed 96 novel expressed sequence tags (ESTs) and an additional 197 matching uncharacterized ESTs or genomic clones derived from genome sequencing projects. With the exception of a handful of genes, whose functions are still unclear, most of the 311 known genes identified in this screen are expressed in embryonic development and/or the nervous system. At least 80 of these genes are implicated in disorders of differentiation, neural development and/or neural function. This study provides an initial snapshot of gene expression during early neural differentiation of ES cell cultures. Given the recent identification of human ES cells, further characterization of these novel and uncharacterized ESTs has the potential to identify genes that may be important in nervous system development, physiology and disease. Electronic Publication  相似文献   

7.
采用单层贴壁分化的方法在无血清条件下诱导同源饲养层培养的人胚胎干细胞定向分化,得到了高比例的神经前体细胞(97.5±0.83)%(P<0.05)。这些神经前体细胞具有分化为神经元、星形胶质细胞和少突胶质细胞的能力。在长期的传代培养中发现,随着培养时间的延长,nestin阳性的神经前体细胞比例下降,同时发育能力也发生了变化。在传代培养的早期,神经前体细胞发育为神经元的比例很高,几乎没有胶质细胞分化出来。随着培养时间的延长,胶质细胞的比例逐渐上升。这与体内神经系统的发育过程非常相似。进一步研究发现具有bHLH(basic helix-loop-helix)结构域的转录因子neurogenein2(Ngn2)和Olig2可能在这一变化中起重要作用。因此,人胚胎干细胞来源的神经前体细胞能够模拟体内神经发育的模式,为在体外研究人的神经发育和再生医学奠定了基础。  相似文献   

8.
This paper described that neural stem cells (hsNSCs) were isolated and expanded rapidly from human fetal striatum in adherent culture. The population was serum- and growth factor-dependent and expressed neural stem cell markers. They were capable of multi-differentiation into neurons, astrocytes, and oligodendrocytes. When plated in the dopaminergic neuron inducing medium, human striatum neural stem cells could differentiate into tyrosine hydroxylase positive neurons. hsNSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 44.28h and until now it has divided for more than 82 generations in vitro. Normal human diploid karyotype was unchanged throughout the in vitro culture period. Together, this study has exploited a method for continuous and rapid expansion of human neural stem cells as pure population, which maintained the capacity to generate almost fifty percent neurons. The availability of such cells may hold great interest for basic and applied neuroscience.  相似文献   

9.
Currently, there are no differentiation strategies for human embryonic stem cells (hESCs) that efficiently produce one specific cell type, possibly because of lack of understanding of the genes that control signaling events prior to overt differentiation. sed HepG2 cell conditioned medium (MEDII), which induces early differentiation in mouse ES cells while retaining pluripotent markers, to query gene expression in hESCs. Treatment of adherent hESCs with 50% MEDII medium effected differentiation to a cell type with gene expression similar to primitive streak stage cells of mouse embryos. MEDII treatment up-regulates TDGF1 (Cripto), a gene essential for anterior-posterior axis and mesoderm formation in mouse embryos and a key component of the TGFB1/NODAL signaling pathway. LEFTYA, an antagonist of NODAL/TDGF1 signaling expressed in anterior visceral endoderm, is down-regulated with MEDII treatment, as is FST, an inhibitor of mesoderm induction via the related INHBE1 pathway. In summary, the TGFB1/NODAL pathway is important for primitive-streak and mesoderm formation and in using MEDII, we present a means for generating an in vitro cell population that maintains pluripotent gene expression (POU5F1, NANOG) and SSEA-4 markers while regulating genes in the TGFB1/NODAL pathway, which may lead to more uniform formation of mesoderm in vitro.  相似文献   

10.
Embryoid bodies, which are similar to post-implantation egg-cylinder stage embryos, provide a model for the study of embryo development and stem cell differentiation. We describe here a novel method for generating embryoid bodies from murine embryonic stem (ES) cells cultured on the STO feeder layer. The ES cells grew into compact aggregates in the first 3 days of coculture, then became simple embryoid bodies (EBs) possessing primitive endoderm on the outer layer. They finally turned into cystic embryoid bodies after being transferred to Petri dishes for 1-3 days. Evaluation of the EBs in terms of morphology and differentiating potential indicates that they were typical in structure and could generate cells derived from the three germ layers. The results show that embryoid bodies can form not only in suspension culture but also directly from ES cells cultured on the STO feeder layer.  相似文献   

11.
Kawamorita M  Suzuki C  Saito G  Sato T  Sato K 《Human cell》2002,15(3):178-182
Embryonic stem (ES) cells are pluripotent cells isolated from the inner cell mass of blastocysts. ES cells are able to differentiate into the three primitive layers (endoderm, mesoderm, and ectoderm) of the organism, including the germline. In recent reports mouse ES cells have been successfully applied in the treatment of spinal cord injury, hereditary myelin disorder of the central nervous system, and diabetes mellitus. In this study, we investigated the induction of mouse ES cell differentiation, using culture of embryoid bodies (EBs) into the diverse tissues. EBs were formed by culturing ES cells (129/SV strain) in DMEM supplemented with 10% FBS, in the absence of feeder cells and leukemia inhibitory factor (LF). EBs were induced to differentiate by treatment with retinoic acid (RA). In control medium (non-RA medium) beating muscles, blood vessels, hemocytes, and cartilages were frequently observed in EBs. Moreover, when EBs were cultured in medium including RA (5 x 10(-8) M, and 5 x 10(-9) M), differentiation of the optic vesicle, lens, retina, and neural groove was observed. In this study we demonstrated that an efficient system for inducing the differentiation of ES cells using EBs.  相似文献   

12.
Pluripotent embryonic stem (ES) cells are the most versatile cells, with the potential to differentiate into all types of cell lineages including neural precursor cells (NPCs), which can be expanded in large numbers for significant periods of time to provide a reliable cell source for transplantation in neurodegenerative disorders such as Parkinson's disease (PD). In the present study, we used the MESPU35 mouse ES cell line, which expresses enhanced green fluorescent protein that enables one to distinguish between transplanted cells and cells of host origin. Embryoid bodies (EBs) were formed and were induced to NPCs in N2 selection medium plus fibronectin. Praxiology and immunohistochemistry methods were used to observe the survival, differentiation, and therapeutic effect of NPCs after grafted into the striatum of PD rats. We found that mouse ESc were differentiated into nestin-positive NPCs 6 days after the EBs formed and cultured in the N2 selection medium. The number of survival NPCs was increased significantly by fibronectin. About 23.76+/-2.29% of remaining cells were tyrosine hydroxylase (TH)-positive 12 days after NPCs were cultured in N2 selective medium. The survival rates of NPCs were 2.10+/-0.41% and about 90.90+/-3.00% of the engrafted NPCs were TH-positive 6 weeks after transplantation into the striatum of PD rats. The rotation of PD rats was relieved 3 weeks after the NPCs transplantation and this effect was kept for at least 6 weeks. It suggests that most of the survival NPCs derived from ES cells differentiated into TH-positive neurons after grafted into the striatum of PD rats, which produces therapeutic effect on PD.  相似文献   

13.
This study was carried out to isolate and characterize buffalo embryonic stem (ES) cell-like cells from in vitro-produced embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 120 blastocysts whereas 28 morulae were used for the isolation of blastomeres mechanically. The ICM cells/ blastomeres were cultured on mitomycin-C-treated feeder layer. Primary cell colony formation was higher (P < 0.05) for hatched blastocysts (73.1%, 30/41) than that for early/expanded blastocysts (25.3%, 20/79). However, no primary cell colonies were formed when blastomeres obtained from morulae were cultured. Primary colonies were formed in 14.1% (12/85) of intact blastocyst culture, which was significantly lower (P < 0.05) than that of 41.6% for ICM culture. These colonies were separated by enzymatic or mechanical disaggregation. Using mechanical disaggregation method, the cells remained undifferentiated and two buffalo ES cell-like cell lines (bES1, bES2) continued to grow in culture up to eight passages. However, disassociation through enzymatic method resulted in differentiation. Undifferentiated cells exhibited stem cell morphological features, normal chromosomal morphology, and expressed specific markers such as alkaline phosphatase (AP) and Oct-4. Cells formed embryoid bodies (EBs) in suspension culture; extended culture of EBs resulted in formation of cystic EBs. Following prolonged in vitro culture, these cells differentiated into several types of cells including neuron-like and epithelium-like cells. Furthermore, the vitrified-thawed ES cell-like cells also exhibited typical stem cell characteristics. In conclusion, buffalo ES cell-like cells could be isolated from in vitro-produced blastocysts and maintained in vitro for prolonged periods of time.  相似文献   

14.
The first non-hematopoietic mesenchymal stem cells (MSCs) were discovered by Friedenstein in 1976, who described clonal, plastic adherent cells from bone marrow capable of differentiating into osteoblasts, adipocytes, and chondrocytes. More recently, investigators have now demonstrated that multi-potent MSCs can be recovered from a variety of other adult tissues and differentiate into numerous tissue lineages including myoblasts, hepatocytes and possibly even neural tissue. Because MSCs are multipotent and easily expanded in culture, there has been much interest in their clinical potential for tissue repair and gene therapy and as a result, numerous studies have been carried out demonstrating the migration and multi-organ engraftment potential of MSCs in animal models and in human clinical trials. This review describes the recent advances in the understanding of MSC biology.  相似文献   

15.
Early embryonic stem (EES) cells, which were established from 2 cell stage embryos obtained from ddY mice, had similar characteristics as embryonic stem (ES) cells. These cells were maintained in an undifferentiated stage in growth media supplemented with leukemia inhibitory factor (LIF) and were capable of differentiating into triploblastic tissues under various growth factors. It has been known that normal sized embryoid bodies (EBs) are formed by removing LIF. In this study, large EBs gradually formed along the side wall of a culture dish, particularly at the boundary between the air and the growth medium when cells were cultured for a considerable period of time and without subculturing. We call this method the "wall adhesion culture" procedure. The method itself is simple and do not need any instruments except plastic dishes because only the side walls of the dishes were utilized. The mean thickness of the large EBs was about 1.5 mm 3 months after establishing the static culture. Their surface was covered with a monolayer of cells and they contained an eosinophilic cell matrix. By electron microscopy, some characteristic structures was observed, such as intracisternal A particles which were present inside the swelling of the rough endoplasmic reticulum. Since many tissues derived from ES cells are obtained through EBs, it is expected that efficient acquisition of sufficient quantities of these structures using the wall adhesion culture procedure will be a shortcut for using ES cells in regenerative medicine.  相似文献   

16.
小鼠胚胎神经干细胞的分离培养及其鉴定   总被引:4,自引:2,他引:2  
且的探索小鼠胚胎神经干细胞的体外培养方法,并获取高纯度的神经干细胞,为神经干细胞的深入研究提供实验材料。方法无菌条件下分离E15天小鼠胚脑皮质,制成单细胞悬液,在bFGF和B27存在的培养基中培养扩增,通过免疫细胞化学染色鉴定神经干细胞及其子代细胞的分化方向。结果培养的部分细胞在B27和bFGF存在的无血清培养基中可以在体外分裂增殖,同时表达神经干细胞特异性抗原nestin,并在撤出B27和bFGF的有血清培养基中向神经细胞和胶质细胞分化。结论小鼠胚脑皮质存在具有多向分化潜能的神经干细胞,这些细胞可以在体外稳定培养、传代并自然分化,为细胞替代治疗提供了理想的细胞来源。  相似文献   

17.
The neural crest is a transient population of multipotent progenitors contributing to a diverse array of tissues throughout the vertebrate embryo. Embryonic stem (ES) cells are able to form embryoid body and spontaneously differentiate to various lineages, following a reproducible temporal pattern of development that recapitulates early embryogenesis. Embryoid bodies were triturated and the dissociated cells were processed for fluorescence-activated cell sorting (FACS), and more than 1% of cells were identified as frizzled-3+/cadherin-11+. Expression of marker genes associated with various terminal fates was detected for chondrocytes, glia, neurons, osteoblasts and smooth muscles, indicating that the FACS-sorted frizzled-3+/cadherin-11+ cells were multipotent progenitor cells capable of differentiating to fates associated with cranial neural crest. Moreover, the sorted cells were able to self-renew and maintain multipotent differentiation potential. The derivation of cranial neural crest-like multipotent progenitor cells from ES cells provides a new tool for cell lineage analysis of neural crest in vitro.  相似文献   

18.
Cultured mouse D3 embryonic stem (ES) cells differentiating into embryoid bodies (EBs) expressed several Wnt isoforms, nearly all isotypes of the Wnt receptor Frizzled and the Wnt/Dickkopf (Dkk) co-receptor low-density lipoprotein receptor-related protein (LRP) type 5. A 4-day treatment with retinoic acid (RA), which promoted neural differentiation of EBs, substantially increased the expression of the Wnt antagonist Dkk-1, and induced the synthesis of the Wnt/Dkk-1 co-receptor LRP6. Recombinant Dkk-1 applied to EBs behaved like RA in inducing the expression of the neural markers nestin and distal-less homeobox gene (Dlx-2). Recombinant Dkk-1 was able to inhibit the Wnt pathway, as shown by a reduction in nuclear beta-catenin levels. Remarkably, the antisense- or small interfering RNA-induced knockdown of Dkk-1 largely reduced the expression of Dlx-2, and the neuronal marker beta-III tubulin in EBs exposed to RA. These data suggest that induction of Dkk-1 and the ensuing inhibition of the canonical Wnt pathway is required for neural differentiation of ES cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号