首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ectodysplasin A (EDA) is a ligand of the tumor necrosis factor (TNF) family that has been shown to play a crucial role in ectodermal differentiation. Mutations of the syntenic ectodysplasin A gene (Eda) are responsible for Tabby (Ta) phenotype in mice and human X-linked hypohidrotic ectodermal dysplasia (XLHED). EDA-A1 and EDA-A2 are the two main splice variants of Eda, which differ from each other in only two amino acid residues and engage the tumor necrosis factor (TNF) family receptors EDAR and XEDAR, respectively. We have used the baculovirus/insect cell system to express the recombinant EDA proteins fused to the Fc portion of a truncated human IgG1 immunoglobulin heavy chain. Immunoadhesins (4.5-4.7 mg/L) from crude supernatant could be purified to near homogeneity by using rProtein A affinity chromatography. The purified EDA immunoadhesins were endowed with ligand-binding activity as they could bind EDAR or XEDAR on the surface of 293T cells that had been transiently transfected with the corresponding plasmids. Functional activities of EDA immunoadhesins were demonstrated by their ability to activate the NF-kappaB pathway in cells expressing their cognate receptors. These results open up the possibility of obtaining large amounts of purified EDA proteins to investigate EDAR/XEDAR related signaling pathways and for the treatment of patients with X-linked hypohidrotic ectodermal dysplasia.  相似文献   

2.
The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. In this study, several agonist anti-EDAR monoclonal antibodies were generated that cross-react with the extracellular domains of human, dog, rat, mouse, and chicken EDAR. Their half-life in adult mice was about 11 days. They induced tail hair and sweat gland formation when administered to newborn EDA-deficient Tabby mice, with an EC(50) of 0.1 to 0.7 mg/kg. Divalency was necessary and sufficient for this therapeutic activity. Only some antibodies were also agonists in an in vitro surrogate activity assay based on the activation of the apoptotic Fas pathway. Activity in this assay correlated with small dissociation constants. When administered in utero in mice or at birth in dogs, agonist antibodies reverted several ectodermal dysplasia features, including tooth morphology. These antibodies are therefore predicted to efficiently trigger EDAR signaling in many vertebrate species and will be particularly suited for long term treatments.  相似文献   

3.
4.
X-linked hypohidrotic ectodermal dysplasia (XLHED), the most common of the ectodermal dysplasias, results in the abnormal development of teeth, hair, and eccrine sweat glands. The gene responsible for this disorder, EDA1, was identified by isolation of a single cDNA that was predicted to encode a 135-amino-acid protein. Mutations in this splice form were detected in <10% of families with XLHED. The subsequent cloning of the murine homologue of the EDA1 gene (Tabby [Ta]) allowed us to identify a second putative isoform of the EDA1 protein (isoform II) in humans. This EDA1 cDNA is predicted to encode a 391-residue protein, of which 256 amino acids are encoded by the new exons. The putative protein is 94% identical to the Ta protein and includes a collagen-like domain with 19 repeats of a Gly-X-Y motif in the presumptive extracellular domain. The genomic structure of the EDA1 gene was established, and the complete sequence of the seven new exons was determined in 18 XLHED-affected males. Putative mutations, including 12 missense, one nonsense, and four deletion mutations, were identified in approximately 95% of the families. The results suggest that EDA1 isoform II plays a critical role in tooth, hair, and sweat gland morphogenesis, whereas the biological significance of isoform I remains unclear. Identification of mutations in nearly all of the XLHED families studied suggests that direct molecular diagnosis of the disorder is feasible. Direct diagnosis will allow carrier detection in families with a single affected male and will assist in distinguishing XLHED from the rarer, clinically indistinguishable, autosomal recessive form of the disorder.  相似文献   

5.
EDA-A1 and EDA-A2 are members of the tumor necrosis factor family of ligands. The products of alternative splicing of the ectodysplasin (EDA) gene, EDA-A1 and EDA-A2 differ by an insertion of two amino acids and bind to distinct receptors. The longer isoform, EDA-A1, binds to EDAR and plays an important role in sweat gland, hair, and tooth development; mutations in EDA, EDAR, or the downstream adaptor EDARADD cause hypohidrotic ectodermal dysplasia. EDA-A2 engages the receptor XEDAR, but its role in the whole organism is less clear. We have generated XEDAR-deficient mice by gene targeting and transgenic mice expressing secreted forms of EDA-A1 or EDA-A2 downstream of the skeletal muscle-specific myosin light-chain 2 or skin-specific keratin 5 promoter. Mice lacking XEDAR were indistinguishable from their wild-type littermates, but EDA-A2 transgenic mice exhibited multifocal myodegeneration. This phenotype was not observed in the absence of XEDAR. Skeletal muscle in EDA-A1 transgenic mice was unaffected, but their sebaceous glands were hypertrophied and hyperplastic, consistent with a role for EDA-A1 in the development of these structures. These data indicate that XEDAR-transduced signals are dispensable for development of ectoderm-derived organs but might play a role in skeletal muscle homeostasis.  相似文献   

6.
Mutations in members of the ectodysplasin (TNF-related) signalling pathway, EDA, EDAR, and EDARADD in mice and humans produce an ectodermal dysplasia phenotype that includes missing teeth and smaller teeth with reduced cusps. Using the keratin 14 promoter to target expression of an activated form of Edar in transgenic mice, we show that expression of this transgene is able to rescue the tooth phenotype in Tabby (Eda) and Sleek (Edar) mutant mice. High levels of expression of the transgene in wild-type mice result in molar teeth with extra cusps, and in some cases supernumerary teeth, the opposite of the mutant phenotype. The level of activation of Edar thus determines cusp number and tooth number during tooth development.  相似文献   

7.
Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.  相似文献   

8.
Hypohydrotic Ectodermal Dysplasia (HED) is a genetic disease seen in humans and mice. It is characterized by loss of hair, sweat glands, and teeth. The predominant X-linked form results from mutations in ectodysplasin-A (EDA), a TNF-like ligand. A phenotypically indistinguishable autosomal form of the disease results from mutations in the receptor for EDA (EDAR). EDAR is a NF-kappaB-activating, death domain-containing member of the TNF receptor family. crinkled, a distinct autosomal form of HED, was discovered in a mouse strain in which both the ligand (EDA) and receptor (EDAR) were wild-type, suggestive of a disruption further downstream in the signaling pathway. Employing a forward genetic approach, we have cloned crinkled (CR) and find it to encode a novel death domain-containing adaptor. crinkled binds EDAR through a homotypic death domain interaction and mediates engagement of the NF-kappaB pathway, possibly by recruiting TRAF2 to the receptor-signaling complex. This is an unprecedented example of naturally occurring mutations in ligand, receptor, or adaptor giving rise to the same phenotypic disease characterized by a defect in the proper development of epidermal appendages.  相似文献   

9.
Liu Y  Yu X  Wang L  Li C  Archacki S  Huang C  Liu JY  Wang Q  Liu M  Tang Z 《Gene》2012,491(2):246-250
X-linked recessive hypohidrotic ectodermal dysplasia (XLHED) is characterized by the defective morphogenesis of teeth, hair, and eccrine sweat glands. It is associated with mutations in the EDA gene. Up to now, more than 100 mutations in the EDA gene have been reported to cause XLHED. The product of EDA gene is a trimeric type II transmembrane protein that belongs to the tumor necrosis factor (TNF) family of ligands. In this study, we identified a Chinese family with XLHED. Direct DNA sequencing of the whole coding region of EDA revealed a novel missense mutation, p.Leu354Pro in a patient affected with XLHED. This mutation was not found in either unaffected male individuals of the family or 168 normal controls. The substitution of Leu354 with Pro was found to be located in the TNF-like domain of EDA and may influence the epithelial signaling pathway required for the normal ectodermal development through altering the topology of EDA. Our finding broadens the spectrum of EDA mutations and may help to understand the molecular basis of XLHED and aid genetic counseling.  相似文献   

10.
X-linked and autosomal forms of anhidrotic ectodermal dysplasia syndromes (HED) are characterized by deficient development of several ectodermal organs, including hair, teeth and exocrine glands. The recent cloning of the genes that underlie these syndromes, ectodysplasin (ED1) and the ectodysplasin A receptor (EDAR), and their identification as a novel TNF ligand-receptor pair suggested a role for TNF signaling in embryonic morphogenesis. In the mouse, the genes of the spontaneous mutations Tabby (Ta) and downless (dl) were identified as homologs of ED1 and EDAR, respectively. To gain insight into the function of this signaling pathway in development of skin and hair follicles, we analyzed the expression and regulation of Eda and Edar in wild type as well as Tabby and Lef1 mutant mouse embryos. We show that Eda and Edar expression is confined to the ectoderm and occurs in a pattern that suggests a role of ectodysplasin/Edar signaling in the interactions between the ectodermal compartments and the formation and function of hair placodes. By using skin explant cultures, we further show that this signaling pathway is intimately associated with interactions between the epithelial and mesenchymal tissues. We also find that Ta mutants lack completely the placodes of the first developing tylotrich hairs, and that they do not show patterned expression of placodal genes, including Bmp4, Lef1, Shh, Ptch and Edar, and the genes for beta-catenin and activin A. Finally, we identified activin as a mesenchymal signal that stimulates Edar expression and WNT as a signal that induces Eda expression, suggesting a hierarchy of distinct signaling pathways in the development of skin and hair follicles. In conclusion, we suggest that Eda and Edar are associated with the onset of ectodermal patterning and that ectodysplasin/edar signaling also regulates the morphogenesis of hair follicles.  相似文献   

11.
Patients with defective ectodysplasin A (EDA) are affected by X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by sparse hair, inability to sweat, decreased lacrimation, frequent pulmonary infections, and missing and malformed teeth. The canine model of XLHED was used to study the developmental impact of EDA on secondary dentition, since dogs have an entirely brachyodont, diphyodont dentition similar to that in humans, as opposed to mice, which have only permanent teeth (monophyodont dentition), some of which are very different (aradicular hypsodont) than brachyodont human teeth. Also, clinical signs in humans and dogs with XLHED are virtually identical, whereas several are missing in the murine equivalent. In our model, the genetically missing EDA was compensated for by postnatal intravenous administration of soluble recombinant EDA. Untreated XLHED dogs have an incomplete set of conically shaped teeth similar to those seen in human patients with XLHED. After treatment with EDA, significant normalization of adult teeth was achieved in four of five XLHED dogs. Moreover, treatment restored normal lacrimation and resistance to eye and airway infections and improved sweating ability. These results not only provide proof of concept for a potential treatment of this orphan disease but also demonstrate an essential role of EDA in the development of secondary dentition.  相似文献   

12.
Mutations in the epithelial morphogen ectodysplasin-A (EDA), a member of the tumor necrosis factor (TNF) family, are responsible for the human disorder X-linked hypohidrotic ectodermal dysplasia (XLHED) characterized by impaired development of hair, eccrine sweat glands, and teeth. EDA-A1 and EDA-A2 are two splice variants of EDA, which bind distinct EDA-A1 and X-linked EDA-A2 receptors. We identified a series of novel EDA mutations in families with XLHED, allowing the identification of the following three functionally important regions in EDA: a C-terminal TNF homology domain, a collagen domain, and a furin protease recognition sequence. Mutations in the TNF homology domain impair binding of both splice variants to their receptors. Mutations in the collagen domain can inhibit multimerization of the TNF homology region, whereas those in the consensus furin recognition sequence prevent proteolytic cleavage of EDA. Finally, a mutation affecting an intron splice donor site is predicted to eliminate specifically the EDA-A1 but not the EDA-A2 splice variant. Thus a proteolytically processed, oligomeric form of EDA-A1 is required in vivo for proper morphogenesis.  相似文献   

13.
Li S  Li J  Cheng J  Zhou B  Tong X  Dong X  Wang Z  Hu Q  Chen M  Hua ZC 《PloS one》2008,3(6):e2396
Here we report two unrelated Chinese families with congenital missing teeth inherited in an X-linked manner. We mapped the affected locus to chromosome Xp11-Xq21 in one family. In the defined region, both families were found to have novel missense mutations in the ectodysplasin-A (EDA) gene. The mutation of c.947A>G caused the D316G substitution of the EDA protein. The mutation of c.1013C>T found in the other family resulted in the Thr to Met mutation at position 338 of EDA. The EDA gene has been reported responsible for X-linked hypohidrotic ectodermal dysplasia (XLHED) in humans characterized by impaired development of hair, eccrine sweat glands, and teeth. In contrast, all the affected individuals in the two families that we studied here had normal hair and skin. Structural analysis suggests that these two novel mutants may account for the milder phenotype by affecting the stability of EDA trimers. Our results indicate that these novel missense mutations in EDA are associated with the isolated tooth agenesis and provide preliminary explanation for the abnormal clinical phenotype at a molecular structural level.  相似文献   

14.

Background  

Ectodysplasin-A appears to be a critical component of branching morphogenesis. Mutations in mouse Eda or human EDA are associated with absent or hypoplastic sweat glands, sebaceous glands, lacrimal glands, salivary glands (SMGs), mammary glands and/or nipples, and mucous glands of the bronchial, esophageal and colonic mucosa. In this study, we utilized Eda Ta (Tabby) mutant mice to investigate how a marked reduction in functional Eda propagates with time through a defined genetic subcircuit and to test the proposition that canonical NFκB signaling is sufficient to account for the differential expression of developmentally regulated genes in the context of Eda polymorphism.  相似文献   

15.
A crucial issue in genetic counseling is the recognition of nonallelic genetic heterogeneity. Hypohidrotic (anhidrotic) ectodermal dysplasia (HED), a genetic disorder characterized by defective development of hair, teeth, and eccrine sweat glands, is usually inherited as an X-linked recessive trait mapped to the X-linked ectodermal dysplasia locus, EDA, at Xq12-q13.1. The existence of an autosomal recessive form of the disorder had been proposed but subsequently had been challenged by the hypothesis that the phenotype of severely affected daughters born to unaffected mothers in these rare families may be due to marked skewing of X inactivation. Five families with possible autosomal recessive HED have been identified, on the basis of the presence of severely affected females and unaffected parents in single sibships and in highly consanguineous families with multiple affected family members. The disorder was excluded from the EDA locus by the lack of its cosegregation with polymorphic markers flanking the EDA locus in three of five families. No mutations of the EDA gene were detected by SSCP analysis in the two families not excluded by haplotype analysis. The appearance of affected males and females in autosomal recessive HED was clinically indistinguishable from that seen in males with X-linked HED. The findings of equally affected males and females in single sibships, as well as the presence of consanguinity, support an autosomal recessive mode of inheritance. The fact that phenotypically identical types of HED can be caused by mutations at both X-linked and autosomal loci is analogous to the situation in the mouse, where indistinguishable phenotypes are produced by mutations at both X-linked (Tabby) and autosomal loci (crinkled and downless).  相似文献   

16.
17.
Signaling and subcellular localization of the TNF receptor Edar   总被引:4,自引:0,他引:4  
Tabby and downless mutant mice have identical phenotypes characterized by deficient development of several ectodermally derived organs such as teeth, hair, and sweat glands. Edar, encoded by the mouse downless gene and defective in human dominant and recessive forms of autosomal hypohidrotic ectodermal dysplasia (EDA) syndrome, is a new member of the tumor necrosis factor (TNF) receptor superfamily. The ligand of Edar is ectodysplasin, a TNF-like molecule mutated in the X-linked form of EDA and in the spontaneous mouse mutant Tabby. We have analyzed the response of Edar signaling in transfected cells and show that it activates nuclear factor-kappaB (NF-kappaB) in a dose-dependent manner. When Edar was expressed at low levels, the NF-kappaB response was enhanced by coexpression of ectodysplasin. The activation of NF-kappaB was greatly reduced in cells expressing mutant forms of Edar associated with the downless phenotype. Overexpression of Edar did not activate SAPK/JNK nor p38 kinase. Even though Edar harbors a death domain its overexpression did not induce apoptosis in any of the four cell lines analyzed, nor was there any difference in apoptosis in developing teeth of wild-type and Tabby mice. Additionally, we show that the subcellular localization of dominant negative alleles of downless is dramatically different from that of recessive or wild-type alleles. This together with differences in NF-kappaB responses suggests an explanation for the different mode of inheritance of the different downless alleles.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号