首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Liu Y  Yu X  Wang L  Li C  Archacki S  Huang C  Liu JY  Wang Q  Liu M  Tang Z 《Gene》2012,491(2):246-250
X-linked recessive hypohidrotic ectodermal dysplasia (XLHED) is characterized by the defective morphogenesis of teeth, hair, and eccrine sweat glands. It is associated with mutations in the EDA gene. Up to now, more than 100 mutations in the EDA gene have been reported to cause XLHED. The product of EDA gene is a trimeric type II transmembrane protein that belongs to the tumor necrosis factor (TNF) family of ligands. In this study, we identified a Chinese family with XLHED. Direct DNA sequencing of the whole coding region of EDA revealed a novel missense mutation, p.Leu354Pro in a patient affected with XLHED. This mutation was not found in either unaffected male individuals of the family or 168 normal controls. The substitution of Leu354 with Pro was found to be located in the TNF-like domain of EDA and may influence the epithelial signaling pathway required for the normal ectodermal development through altering the topology of EDA. Our finding broadens the spectrum of EDA mutations and may help to understand the molecular basis of XLHED and aid genetic counseling.  相似文献   

2.

Background  

Ectodysplasin-A appears to be a critical component of branching morphogenesis. Mutations in mouse Eda or human EDA are associated with absent or hypoplastic sweat glands, sebaceous glands, lacrimal glands, salivary glands (SMGs), mammary glands and/or nipples, and mucous glands of the bronchial, esophageal and colonic mucosa. In this study, we utilized Eda Ta (Tabby) mutant mice to investigate how a marked reduction in functional Eda propagates with time through a defined genetic subcircuit and to test the proposition that canonical NFκB signaling is sufficient to account for the differential expression of developmentally regulated genes in the context of Eda polymorphism.  相似文献   

3.
Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.  相似文献   

4.
Both, calmodulin (CaM) as well as the antigen Ki67 show a close relationship to cell proliferation. By means of specific antibodies against them, it has become possible to study the spatial distribution of proliferative compartments in tissues. We performed an indirect immunofluorescence study on unfixed frozen sections of human adult skin to gain more informations about the spatial distribution of immunoreactive CaM and Ki67 in skin appendages, i.e. anagen hair follicle, sebaceous and eccrine sweat gland. Two major patterns of immunoreactivity were seen: Type (1) or epidermis-like, which was present in the interfollicular epidermis and the pilosebaceous unit. Type (2) or sweat gland type, which was seen in eccrine sweat glands. Both types disclosed significant differences in the relative number of proliferative cells in S-phase, which might be a consequence of a quiet different tissue architecture. Furthermore, myoepithelial cells of secretory coils were likely to represent mainly SQ-cells. Their immunoreactivity in human skin was quiet different from other parts of eccrine sweat glands suggesting another ontogenetic pathway.  相似文献   

5.
皮肤类器官作为一种新型的类器官模型,不仅能高度模拟皮肤组织的生理结构和功能,更好地在不同体外环境下还原较真实的皮肤生态,还可以应用于皮肤发育研究、皮肤疾病病理研究及药物筛选等领域。在干细胞研究中,皮肤类器官模型可以在特殊的生境下对具有特定功能的皮肤细胞及其附属物进行重建和改造,以弥补现有体外皮肤模型在结构、功能等方面的不足。基于此,皮肤类器官将会在皮肤再生、组织修复、药物筛选及医学美容等方面扮演越来越重要的角色。本文详述了皮肤类器官构建中所参与的细胞来源及近年来的应用,并对未来皮肤类器官的发展与优化做出了展望。  相似文献   

6.
The skin of the golden spider monkey (Ateles geoffroyi) has many histological and histochemical similarities to that of the woolly monkey (Lagothrix lagotricha) and howler monkey (Alouatta caraya); however, this monkey possesses certain peculiar properties such as large sebaceous glands, a combined distributional pattern of eccrine and apocrine sweat glands, and abundant alkaline phosphatase in the sebaceous glands, apocrine and eccrine sweat glands. In brief, the anatomical and histochemical properties of the skin of this animal are more similar to those of the howler monkey than to the woolly monkey. In addition, the skin of these three Ceboids falls phylogenetically between that of the Cercopithecoidea and Pithecoidea.  相似文献   

7.
Surgical skin planing is, in the hands of an experienced operator, a safe and highly effective procedure for treating a number of cutaneous defects, most notably pitted acne scars. The operation is facilitated by the use of a new instrument (jet-spray handpiece) which allows the operator to freeze the skin and plane it almost simultaneously, and by a new freezing agent, dichlorotetrafluoro-ethane, which adds to the safety by eliminating the old hazards of inflammability, explosion, and the toxic inhalation of ethyl chloride. The ability to sharply differentiate between keloid and hypertrophic scar is fundamental to surgical skin planing. A hypertrophic scar results from the removal or destruction of the cutaneous appendages (hair follicles, oil and sweat glands and ducts); whereas a keloid is an idiosyncratic response without regard to damage of the appendages.Properly performed surgical planing does not entirely remove these appendages and therefore healing occurs without scarring.  相似文献   

8.
The migration of epithelial cells from dermal appendages toward the wound surface is essential for re-epithelialization of partial thickness burn injuries. This study provides evidence that these cells in vivo synthesize a mitogenic and fibrogenic factor, insulin-like growth factor-1 (IGF-1), which may promote the development of the post-burn fibroproliferative disorder, hypertrophic scarring (HSc). An evaluation of 7 post-burn hypertrophic scars, 7 normal skin samples obtained from the same patients and 4 mature scars revealed that IGF-1 expressing cells from the disrupted sweat glands tend to reform small sweat glands of 4-10 cells/gland in post-burn HSc. The number of these cells increases with time and the glands become larger in mature scar. Other epithelial cells such as those found in sebaceous glands and basal and suprabasal keratinocytes, also express IGF-1 protein and mRNA as detected by Northern and RT-PCR analysis of RNA obtained from whole skin and separated epidermis and dermis. However, cultured keratinocytes did not express mRNA for IGF-1. Histological comparisons between normal and HSc sections show no mature sebaceous glands in dermal fibrotic tissues but the number of IGF-1 producing cells including infiltrated immune cells was markedly higher in the dermis of hypertrophic scar tissues relative to that of the normal control. In these tissues, but not in normal dermis, IGF-1 protein was found associated with the extracellular matrix. By in situ hybridization, IGF-1 mRNA was localized to both epithelial and infiltrated immune cells. Collectively, these findings suggest that in normal skin, fibroblasts have little or no access to diffusible IGF-1 expressed by epithelial cells of the epidermis, sweat and sebaceous glands; while following dermal injury when these structures are disrupted, IGF-1 may contribute to the development of fibrosis through its fibrogenic and mitogenic functions. Reformation of sweat glands during the later stages of healing may, therefore, limit this accessibility, and lead to scar maturation.  相似文献   

9.
The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. In this study, several agonist anti-EDAR monoclonal antibodies were generated that cross-react with the extracellular domains of human, dog, rat, mouse, and chicken EDAR. Their half-life in adult mice was about 11 days. They induced tail hair and sweat gland formation when administered to newborn EDA-deficient Tabby mice, with an EC(50) of 0.1 to 0.7 mg/kg. Divalency was necessary and sufficient for this therapeutic activity. Only some antibodies were also agonists in an in vitro surrogate activity assay based on the activation of the apoptotic Fas pathway. Activity in this assay correlated with small dissociation constants. When administered in utero in mice or at birth in dogs, agonist antibodies reverted several ectodermal dysplasia features, including tooth morphology. These antibodies are therefore predicted to efficiently trigger EDAR signaling in many vertebrate species and will be particularly suited for long term treatments.  相似文献   

10.
Surgical skin planing is, in the hands of an experienced operator, a safe and highly effective procedure for treating a number of cutaneous defects, most notably pitted acne scars.The operation is facilitated by the use of a new instrument (jet-spray handpiece) which allows the operator to freeze the skin and plane it almost simultaneously, and by a new freezing agent, dichlorotetrafluoro-ethane, which adds to the safety by eliminating the old hazards of inflammability, explosion, and the toxic inhalation of ethyl chloride.The ability to sharply differentiate between keloid and hypertrophic scar is fundamental to surgical skin planing. A hypertrophic scar results from the removal or destruction of the cutaneous appendages (hair follicles, oil and sweat glands and ducts); whereas a keloid is an idiosyncratic response without regard to damage of the appendages.Properly performed surgical planing does not entirely remove these appendages and therefore healing occurs without scarring.  相似文献   

11.
Ectodysplasin A (Eda), a member of the tumour necrosis factor superfamily, plays an important role in ectodermal organ development. An EDA mutation underlies the most common of ectodermal dysplasias, that is X‐linked hypohidrotic ectodermal dysplasia (XLHED) in humans. Even though it lacks a developmental function, the role of Eda during the postnatal stage remains elusive. In this study, we found tight junctional proteins ZO‐1 and claudin‐1 expression is largely reduced in epidermal, corneal and lung epithelia in Eda mutant Tabby mice at different postnatal ages. These declines are associated with tail ulceration, corneal pannus formation and lung infection. Furthermore, topical application of recombinant Eda protein markedly mitigated corneal barrier dysfunction. Using cultures of a human corneal epithelial cell line and Tabby mouse skin tissue explants, Eda up‐regulated expression of ZO‐1 and claudin‐1 through activation of the sonic hedgehog signalling pathway. We conclude that EDA gene expression contributes to the maintenance of epithelial barrier function. Such insight may help efforts to identify novel strategies for improving management of XLHED disease manifestations in a clinical setting.  相似文献   

12.
Localization of sex steroid receptors in human skin   总被引:10,自引:0,他引:10  
Sex steroid hormones are involved in regulation of skin development and functions as well as in some skin pathological events. To determine the sites of action of estrogens, androgens and progestins, studies have been performed during the recent years to accurately localize receptors for each steroid hormone in human skin. Androgen receptors (AR) have been localized in most keratinocytes in epidermis. In the dermis, AR was detected in about 10% of fibroblasts. In sebaceous glands, AR was observed in both basal cells and sebocytes. In hair follicles, AR expression was restricted to dermal papillar cells. In eccrine sweat glands, only few secretory cells were observed to express AR. Estrogen receptor (ER) alpha was poorly expressing, being restricted to sebocytes. In contrast, ERbeta was found to be highly expressed in the epidermis, sebaceous glands (basal cells and sebocytes) and eccrine sweat glands. In the hair follicle, ERbeta is widely expressed with strong nuclear staining in dermal papilla cells, inner sheath cells, matrix cells and outer sheath cells including the buldge region. Progesterone receptors (PR) staining was found in nuclei of some keratinocytes and in nuclei of basal cells and sebocytes in sebaceous glands. PR nuclear staining was also observed in dermal papilla cells of hair follicles and in eccrine sweat glands. This information on the differential localization of sex steroid receptors in human skin should be of great help for future investigation on the specific role of each steroid on skin and its appendages.  相似文献   

13.
The skin carries a number of appendages, including hair follicles and a range of glands, which develop under the influence of EDAR signalling. A gain of function allele of EDAR is found at high frequency in human populations of East Asia, with genetic evidence suggesting recent positive selection at this locus. The derived EDAR allele, estimated to have reached fixation more than 10,000 years ago, causes thickening of hair fibres, but the full spectrum of phenotypic changes induced by this allele is unknown. We have examined the changes in glandular structure caused by elevation of Edar signalling in a transgenic mouse model. We find that sebaceous and Meibomian glands are enlarged and that salivary and mammary glands are more elaborately branched with increased Edar activity, while the morphology of eccrine sweat and tracheal submucosal glands appears to be unaffected. Similar changes to gland sizes and structures may occur in human populations carrying the derived East Asian EDAR allele. As this allele attained high frequency in an environment that was notably cold and dry, increased glandular secretions could represent a trait that was positively selected to achieve increased lubrication and reduced evaporation from exposed facial structures and upper airways.  相似文献   

14.
Sweating is a basic skin function in body temperature control. In sweat glands, salt excretion and reabsorption are regulated to avoid electrolyte imbalance. To date, the mechanism underlying such regulation is not fully understood. Corin is a transmembrane protease that activates atrial natriuretic peptide (ANP), a cardiac hormone essential for normal blood volume and pressure. Here, we report an unexpected role of corin in sweat glands to promote sweat and salt excretion in regulating electrolyte homeostasis. In human and mouse eccrine sweat glands, corin and ANP are expressed in the luminal epithelial cells. In corin-deficient mice on normal- and high-salt diets, sweat and salt excretion is reduced. This phenotype is associated with enhanced epithelial sodium channel (ENaC) activity that mediates Na+ and water reabsorption. Treatment of amiloride, an ENaC inhibitor, normalizes sweat and salt excretion in corin-deficient mice. Moreover, treatment of aldosterone decreases sweat and salt excretion in wild-type (WT), but not corin-deficient, mice. These results reveal an important regulatory function of corin in eccrine sweat glands to promote sweat and salt excretion.

Sweating is a basic skin function in body temperature control, and salt excretion and reabsorption in sweat glands are essential for salt-water balance. This study identifies corin, a transmembrane protease that activates atrial natriuretic peptide, as a key enzyme in regulating salt excretion in the skin.  相似文献   

15.
16.
Hypohydrotic Ectodermal Dysplasia (HED) is a genetic disease seen in humans and mice. It is characterized by loss of hair, sweat glands, and teeth. The predominant X-linked form results from mutations in ectodysplasin-A (EDA), a TNF-like ligand. A phenotypically indistinguishable autosomal form of the disease results from mutations in the receptor for EDA (EDAR). EDAR is a NF-kappaB-activating, death domain-containing member of the TNF receptor family. crinkled, a distinct autosomal form of HED, was discovered in a mouse strain in which both the ligand (EDA) and receptor (EDAR) were wild-type, suggestive of a disruption further downstream in the signaling pathway. Employing a forward genetic approach, we have cloned crinkled (CR) and find it to encode a novel death domain-containing adaptor. crinkled binds EDAR through a homotypic death domain interaction and mediates engagement of the NF-kappaB pathway, possibly by recruiting TRAF2 to the receptor-signaling complex. This is an unprecedented example of naturally occurring mutations in ligand, receptor, or adaptor giving rise to the same phenotypic disease characterized by a defect in the proper development of epidermal appendages.  相似文献   

17.
Ectodysplasin signaling in development   总被引:6,自引:0,他引:6  
Ectodysplasin (Eda), a signaling molecule belonging to the tumor necrosis factor family, is required for normal development of several ectodermally derived organs in humans and mice. Two closely related isoforms of ectodysplasin, Eda-A1 and Eda-A2, have been described which bind to and activate two different receptors, Edar and X-linked Eda-A2 receptor (Xedar), respectively. Mutations in Eda, Edar or other molecules of this signaling pathway cause ectodermal dysplasias characterized by defective development of teeth, hairs, and several exocrine glands such as sweat glands presumably due to impaired NF-kappaB response. Studies with mice either lacking the functional proteins of Edar pathway or overexpressing the ligand or receptor suggest that Eda-A1-Edar signaling has multiple roles in ectodermal organ development regulating their initiation, morphogenesis, and differentiation.  相似文献   

18.
The skin is the outer layer of protection against the environment. The development and formation of the skin is regulated by several genetic cascades including the bone morphogenetic protein (BMP) signaling pathway, which has been suggested to play an important role during embryonic organ development. Several skin defects and diseases are caused by genetic mutations or disorders. Ichthyosis is a common genetic skin disorder characterized by dry scaly skin. Loss-of-function mutations in the filaggrin (FLG) gene have been identified as the cause of the ichthyosis vulgaris (IV) phenotype; however, the direct regulation of filaggrin expression in vivo is unknown. We present evidence that BMP signaling regulates filaggrin expression in the epidermis. Mice expressing a constitutively active form of BMP-receptor-IB in the developing epidermis exhibit a phenotype resembling IV in humans, including dry flaky skin, compact hyperkeratosis, and an attenuated granular layer associated with a significantly downregulated expression of filaggrin. Regulation of filaggrin expression by BMP signaling has been further confirmed by the application of exogenous BMP2 in skin explants and by a transgenic model overexpressing Noggin in the epidermis. Our results demonstrate that aberrant BMP signaling in the epidermis causes overproliferation and hyperkeratinization, leading to an IV-like skin disease.  相似文献   

19.
20.
Human eccrine sweat-gland recruitment and secretion rates were investigated from the glabrous (volar) and non-glabrous hand surfaces during psychogenic (mental arithmetic) and thermogenic stimuli (mild hyperthermia). It was hypothesised that these treatments would activate glands from both skin surfaces, with the non-thermal stimulus increasing secretion rates primarily by recruiting more sweat glands. Ten healthy men participated in two seated, resting trials in temperate conditions (25–26 °C). Trials commenced under normothermic conditions during which the first psychogenic stress was applied. That was followed by passive heating (0.5 °C mean body temperature elevation) and thermal clamping, with a second cognitive challenge then applied. Sudomotor activity was evaluated from both hands, with colourimetry used to identify activated sweat glands, skin conductance to determine the onset of precursor sweating and ventilated sweat capsules to measure rates of discharged sweating. From glandular activation and sweat rate data, sweat-gland outputs were derived. These psychogenic and thermogenic stimuli activated sweat glands from both the glabrous and non-glabrous skin surfaces, with the former dominating at the glabrous skin and the latter at the non-glabrous surface. Indeed, those stimuli individually accounted for ~90% of the site-specific maximal number of activated sweat glands observed when both stimuli were simultaneously applied. During the normothermic psychological stimulation, sweating from the glabrous surface was elevated via a 185% increase in the number of activated glands within the first 60 s. The hypothetical mechanism for this response may involve the serial activation of additional eccrine sweat glands during the progressive evolution of psychogenic sweating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号