首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. In this study, several agonist anti-EDAR monoclonal antibodies were generated that cross-react with the extracellular domains of human, dog, rat, mouse, and chicken EDAR. Their half-life in adult mice was about 11 days. They induced tail hair and sweat gland formation when administered to newborn EDA-deficient Tabby mice, with an EC(50) of 0.1 to 0.7 mg/kg. Divalency was necessary and sufficient for this therapeutic activity. Only some antibodies were also agonists in an in vitro surrogate activity assay based on the activation of the apoptotic Fas pathway. Activity in this assay correlated with small dissociation constants. When administered in utero in mice or at birth in dogs, agonist antibodies reverted several ectodermal dysplasia features, including tooth morphology. These antibodies are therefore predicted to efficiently trigger EDAR signaling in many vertebrate species and will be particularly suited for long term treatments.  相似文献   

2.
3.
4.
Liu Y  Yu X  Wang L  Li C  Archacki S  Huang C  Liu JY  Wang Q  Liu M  Tang Z 《Gene》2012,491(2):246-250
X-linked recessive hypohidrotic ectodermal dysplasia (XLHED) is characterized by the defective morphogenesis of teeth, hair, and eccrine sweat glands. It is associated with mutations in the EDA gene. Up to now, more than 100 mutations in the EDA gene have been reported to cause XLHED. The product of EDA gene is a trimeric type II transmembrane protein that belongs to the tumor necrosis factor (TNF) family of ligands. In this study, we identified a Chinese family with XLHED. Direct DNA sequencing of the whole coding region of EDA revealed a novel missense mutation, p.Leu354Pro in a patient affected with XLHED. This mutation was not found in either unaffected male individuals of the family or 168 normal controls. The substitution of Leu354 with Pro was found to be located in the TNF-like domain of EDA and may influence the epithelial signaling pathway required for the normal ectodermal development through altering the topology of EDA. Our finding broadens the spectrum of EDA mutations and may help to understand the molecular basis of XLHED and aid genetic counseling.  相似文献   

5.
Despite their importance to oral health, the mechanisms of minor salivary gland (SG) development are largely unexplored. Here we present in vivo and in vitro analyses of developing minor SGs in wild type and mutant mice. Eda, Shh and Fgf signalling pathway genes are expressed in these glands from an early stage of development. Developing minor SGs are absent in Eda pathway mutant embryos, and these mice exhibit a dysplastic circumvallate papilla with disrupted Shh expression. Supplementation of Eda pathway mutant minor SG explants with recombinant EDA rescues minor SG induction. Supplementation with Fgf8 or Shh, previously reported targets of Eda signalling, leads to induction of gland like structures in a few cases, but these fail to develop into minor SGs.  相似文献   

6.
Permanent correction of an inherited ectodermal dysplasia with recombinant EDA   总被引:12,自引:0,他引:12  
X-linked hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a genetic disorder characterized by absence or deficient function of hair, teeth and sweat glands. Affected children may experience life-threatening high fever resulting from reduced ability to sweat. Mice with the Tabby phenotype share many symptoms with human XLHED patients because both phenotypes are caused by mutations of the syntenic ectodysplasin A gene (Eda) on the X chromosome. Two main splice variants of Eda, encoding EDA1 and EDA2, engage the tumor necrosis factor (TNF) family receptors EDAR and XEDAR, respectively. The EDA1 protein, acting through EDAR, is essential for proper formation of skin appendages; the functions of EDA2 and XEDAR are not known. EDA1 must be proteolytically processed to a soluble form to be active. Here, we show that treatment of pregnant Tabby mice with a recombinant form of EDA1, engineered to cross the placental barrier, permanently rescues the Tabby phenotype in the offspring. Notably, sweat glands can also be induced by EDA1 after birth. This is the first example of a developmental genetic defect that can be permanently corrected by short-term treatment with a recombinant protein.  相似文献   

7.
The structure of the EDA1 gene was investigated in a patient with anhidrotic ectodermal dysplasia. Sequence analysis revealed a novel A1270G transition in exon 9 of the EDA1 gene in the patient and his uncle, whereas the patient's mother and grandmother were heterozygotes. This mutation resulted in Tyr343Cys substitution in the extracellular domain of the EDA1 gene product - ectodysplasin-A. The additional Cys343 was located between Cys332 and Cys346 and formed with Cys352 a cluster of four closely situated residues that could potentially form disulfide bonds. This mutation might affect the tertiary structure of the receptor-binding domain of ectodysplasin-A and precipitate the clinical symptoms of anhidrotic ectodermal dysplasia.  相似文献   

8.
9.
X-linked hypohidrotic ectodermal dysplasia (XHED), an inherited disease recognized in humans, mice, and cattle, is characterized by hypotrichosis, a reduced number or absence of sweat glands, and missing or malformed teeth. In a subset of affected individuals and animals, mutations in the EDA gene (formerly EDI), coding for ectodysplasin, have been found to cause this phenotype. Ectodysplasin is a homotrimeric transmembrane protein with an extracellular TNF-like domain, which has been shown to be involved in the morphogenesis of hair follicles and tooth buds during fetal development. Some human XHED patients also have concurrent immunodeficiency, due to mutations in the NF-κB essential modulator protein (IKBKG; formerly NEMO), which is also encoded on the X chromosome. In a breeding colony of dogs with XHED, immune system defects had been suspected because of frequent pulmonary infections and unexpected deaths resulting from pneumonia. To determine if defects in EDA or IKBKG cause XHED in the dogs, linkage analysis and sequencing experiments were performed. A polymorphic marker near the canine EDA gene showed significant linkage to XHED. The canine EDA gene was sequenced and a nucleotide substitution (G to A) in the splice acceptor site of intron 8 was detected in affected dogs. In the presence of the A residue, a cryptic acceptor site within exon 9 is used, leading to a frame shift and use of a premature stop codon that truncates the translation of both isoforms, EDA-A1 and EDA-A2, resulting in the absence of the TNF-like homology domain, the receptor-binding site of ectodysplasin.The sequence data described in this article have been submitted to GenBank under accession numbers AY924407–AY924414.  相似文献   

10.
11.

Background  

Ectodysplasin-A appears to be a critical component of branching morphogenesis. Mutations in mouse Eda or human EDA are associated with absent or hypoplastic sweat glands, sebaceous glands, lacrimal glands, salivary glands (SMGs), mammary glands and/or nipples, and mucous glands of the bronchial, esophageal and colonic mucosa. In this study, we utilized Eda Ta (Tabby) mutant mice to investigate how a marked reduction in functional Eda propagates with time through a defined genetic subcircuit and to test the proposition that canonical NFκB signaling is sufficient to account for the differential expression of developmentally regulated genes in the context of Eda polymorphism.  相似文献   

12.
Sebaceous glands are skin appendages that secrete sebum onto hair follicles to lubricate the hair and maintain skin homeostasis. In this study, we demonstrated that Cidea is expressed at high levels in lipid-laden mature sebocytes and that Cidea deficiency led to dry hair and hair loss in aged mice. In addition, Cidea-deficient mice had markedly reduced levels of skin surface lipids, including triacylglycerides (TAGs) and wax diesters (WDEs), and these mice were defective in water repulsion and thermoregulation. Furthermore, we observed that Cidea-deficient sebocytes accumulated a large number of smaller-sized lipid droplets (LDs), whereas overexpression of Cidea in human SZ95 sebocytes resulted in increased lipid storage and the accumulation of large LDs. Importantly, Cidea was highly expressed in human sebaceous glands, and its expression levels were positively correlated with human sebum secretion. Our data revealed that Cidea is a crucial regulator of sebaceous gland lipid storage and sebum lipid secretion in mammals and humans.  相似文献   

13.
An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678–27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38αK14 mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and β4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel.  相似文献   

14.
Stimulation of ectodermal organ development by Ectodysplasin-A1   总被引:11,自引:0,他引:11  
Organs developing as ectodermal appendages share similar early morphogenesis and molecular mechanisms. Ectodysplasin, a signaling molecule belonging to the tumor necrosis factor family, and its receptor Edar are required for normal development of several ectodermal organs in humans and mice. We have overexpressed two splice forms of ectodysplasin, Eda-A1 and Eda-A2, binding to Edar and another TNF receptor, Xedar, respectively, under the keratin 14 (K14) promoter in the ectoderm of transgenic mice. Eda-A2 overexpression did not cause a detectable phenotype. On the contrary, overexpression of Eda-A1 resulted in alterations in a variety of ectodermal organs, most notably in extra organs. Hair development was initiated continuously from E14 until birth, and in addition, the transgenic mice had supernumerary teeth and mammary glands, phenotypes not reported previously in transgenic mice. Also, hair composition and structure was abnormal, and the cycling of hairs was altered so that the growth phase (anagen) was prolonged. Both hairs and nails grew longer than normal. Molar teeth were of abnormal shape, and enamel formation was severely disturbed in incisors. Furthermore, sweat gland function was stimulated and sebaceous glands were enlarged. We conclude that ectodysplasin-Edar signaling has several roles in ectodermal organ development controlling their initiation, as well as morphogenesis and differentiation.  相似文献   

15.
EDA-A1 and EDA-A2 are members of the tumor necrosis factor family of ligands. The products of alternative splicing of the ectodysplasin (EDA) gene, EDA-A1 and EDA-A2 differ by an insertion of two amino acids and bind to distinct receptors. The longer isoform, EDA-A1, binds to EDAR and plays an important role in sweat gland, hair, and tooth development; mutations in EDA, EDAR, or the downstream adaptor EDARADD cause hypohidrotic ectodermal dysplasia. EDA-A2 engages the receptor XEDAR, but its role in the whole organism is less clear. We have generated XEDAR-deficient mice by gene targeting and transgenic mice expressing secreted forms of EDA-A1 or EDA-A2 downstream of the skeletal muscle-specific myosin light-chain 2 or skin-specific keratin 5 promoter. Mice lacking XEDAR were indistinguishable from their wild-type littermates, but EDA-A2 transgenic mice exhibited multifocal myodegeneration. This phenotype was not observed in the absence of XEDAR. Skeletal muscle in EDA-A1 transgenic mice was unaffected, but their sebaceous glands were hypertrophied and hyperplastic, consistent with a role for EDA-A1 in the development of these structures. These data indicate that XEDAR-transduced signals are dispensable for development of ectoderm-derived organs but might play a role in skeletal muscle homeostasis.  相似文献   

16.
17.
Ectodysplasin A (Eda), a member of the tumour necrosis factor superfamily, plays an important role in ectodermal organ development. An EDA mutation underlies the most common of ectodermal dysplasias, that is X‐linked hypohidrotic ectodermal dysplasia (XLHED) in humans. Even though it lacks a developmental function, the role of Eda during the postnatal stage remains elusive. In this study, we found tight junctional proteins ZO‐1 and claudin‐1 expression is largely reduced in epidermal, corneal and lung epithelia in Eda mutant Tabby mice at different postnatal ages. These declines are associated with tail ulceration, corneal pannus formation and lung infection. Furthermore, topical application of recombinant Eda protein markedly mitigated corneal barrier dysfunction. Using cultures of a human corneal epithelial cell line and Tabby mouse skin tissue explants, Eda up‐regulated expression of ZO‐1 and claudin‐1 through activation of the sonic hedgehog signalling pathway. We conclude that EDA gene expression contributes to the maintenance of epithelial barrier function. Such insight may help efforts to identify novel strategies for improving management of XLHED disease manifestations in a clinical setting.  相似文献   

18.
We have previously established an experimental system for oxidative DNA damage-induced tumorigenesis in the small intestine of mice. To elucidate the roles of mismatch repair genes in the tumor suppression, we performed oxidative DNA damage-induced tumorigenesis experiments using Msh2-deficient mice. Oral administration of 0.2% Potassium Bromate, KBrO3, effectively induced epithelial tumors in the small intestines of Msh2-deficient mice. We observed a 22.5-fold increase in tumor formation in the small intestines of Msh2-deficient mice compared with the wild type mice. These results indicate that mismatch repair is involved in the suppression of oxidative stress-induced intestinal tumorigenesis in mice. A mutation analysis of the Ctnnb1 gene of the tumors revealed predominant occurrences of G:C to A:T transitions. The TUNEL analysis showed a decreased number of TUNEL-positive cells in the crypts of small intestines from the Msh2-deficient mice compared with the wild type mice after treatment of KBrO3. These results suggest that the mismatch repair system may simultaneously function in both avoiding mutagenesis and inducing cell death to suppress the tumorigenesis induced by oxidative stress in the small intestine of mice.  相似文献   

19.
Matrix proteoglycans such as biglycan (Bgn) dominate skeletal tissue and yet its exact role in regulating bone function is still unclear. In this paper we describe the potential role of (Bgn) in the fracture healing process. We hypothesized that Bgn could regulate fracture healing because of previous work showing that it can affect normal bone formation. To test this hypothesis, we created fractures in femurs of 6-week-old male wild type (WT or Bgn+/0) and Bgn-deficient (Bgn-KO or Bgn-/0) mice using a custom-made standardized fracture device, and analyzed the process of healing over time. The formation of a callus around the fracture site was observed at both 7 and 14 days post-fracture in WT and Bgn-deficient mice and immunohistochemistry revealed that Bgn was highly expressed in the fracture callus of WT mice, localizing within woven bone and cartilage. Micro-computed tomography (μCT) analysis of the region surrounding the fracture line showed that the Bgn-deficient mice had a smaller callus than WT mice. Histology of the same region also showed the presence of less cartilage and woven bone in the Bgn-deficient mice compared to WT mice. Picrosirius red staining of the callus visualized under polarized light showed that there was less fibrillar collagen in the Bgn-deficient mice, a finding confirmed by immunohistochemistry using antibodies to type I collagen. Interestingly, real time RT-PCR of the callus at 7 days post-fracture showed a significant decrease in relative vascular endothelial growth factor A (VEGF) gene expression by Bgn-deficient mice as compared to WT. Moreover, VEGF was shown to bind directly to Bgn through a solid-phase binding assay. The inability of Bgn to directly enhance VEGF-induced signaling suggests that Bgn has a unique role in regulating vessel formation, potentially related to VEGF storage or stabilization in the matrix. Taken together, these results suggest that Bgn has a regulatory role in the process of bone formation during fracture healing, and further, that reduced angiogenesis could be the molecular basis.  相似文献   

20.
Odonto-onycho-dermal dysplasia (OODD), a rare autosomal-recessive inherited form of ectodermal dysplasia including severe oligodontia, nail dystrophy, palmoplantar hyperkeratosis, and hyperhidrosis, was recently shown to be caused by a homozygous nonsense WNT10A mutation in three consanguineous Lebanese families. Here, we report on 12 patients, from 11 unrelated families, with ectodermal dysplasia caused by five previously undescribed WNT10A mutations. In this study, we show that (1) WNT10A mutations cause not only OODD but also other forms of ectodermal dysplasia, reaching from apparently monosymptomatic severe oligodontia to Schöpf-Schulz-Passarge syndrome, which is so far considered a unique entity by the findings of numerous cysts along eyelid margins and the increased risk of benign and malignant skin tumors; (2) WNT10A mutations are a frequent cause of ectodermal dysplasia and were found in about 9% of an unselected patient cohort; (3) about half of the heterozygotes (53.8%) show a phenotype manifestation, including mainly tooth and nail anomalies, which was not reported before in OODD; and (4) heterozygotes show a sex-biased manifestation pattern, with a significantly higher proportion of tooth anomalies in males than in females, which may implicate gender-specific differences of WNT10A expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号