首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 145 毫秒
1.
应用一种新的高通量SNP检测方法-双色荧光杂交芯片技术进行近交系小鼠遗传监测。应用双色荧光杂交芯片技术对4个品系近交系小鼠的多个基因组DNA 样本进行SNP分型,整合6个SNP位点的芯片杂交信息,对样本所属品系进行判断。研究结果表明SNP检测方法-双色荧光杂交芯片技术能够对选定的6个SNP位点进行高准确率分型;双色荧光杂交芯片技术是一种高通量SNP检测的良好工具,适合于对少量近交系品系来源的大样本量小鼠进行遗传污染监测和品系鉴定,并具有扩大应用的潜力。  相似文献   

2.
目的:应用一种新的高通量SNP检测方法-双色荧光杂交芯片技术检测CYPIA1 MspI基因多态性。方法:收集江苏汉族人群原发性肺癌患者75例和相应对照77例,应用双色荧光杂交芯片技术检测了152例样本的CYPIAI基因MspI基因多态性,并应用PCR-RFLP技术验证双色荧光杂交芯片的特异性。结果:152例样本的CYPIAI基因双色荧光杂交芯片技术分型结果与PCR-RFLP结果完全相符,两种方法的基因型分型结果具有很好的一致性。结论:双色荧光杂交芯片技术是一个高通量SNP检测的良好工具,特异性高,在大规模人群SNP筛检中具有良好的发展前案。  相似文献   

3.
目的建立基于PCR-LDR平台的近交系小鼠SNP快速分型方法,用于检测实验小鼠的遗传质量与品系纯度。方法利用可移植性极高的PCR-LDR技术,以常见近交系小鼠为研究对象,选取了21条染色体上的45个SNP位点,分别设计引物和探针,经过筛选和验证,建立了多重PCR-LDR(polymerase chain reaction and ligase detection reaction,PCR-LDR)分型方案。结果四组多重PCR-LDR可实现45个SNP位点的基因分型,其中43个、44个与45个SNP在样本中的检出率分别为100%、90.9%与36.4%。所有样本经分型确定为纯合体,并得到了常见近交系小鼠SNP位点信息。结论实现了常见近交系小鼠快速、高通量的基因分型,可用于遗传质量检测和品系鉴定。  相似文献   

4.
目的探讨采用单核苷酸多态性(SNP)检测方法-双色荧光正相杂交芯片技术对近交系小鼠遗传质量监测及相关影响因素。方法运用基于芯片的双色荧光正相杂交检测SNP技术,进行芯片杂交动力学研究,考察信号值(Cy3,Cy5)和ratio值(Cy5/Cy3)与PCR产物点样浓度、PCR产物长度和荧光标记探针长度之间的关系,研究PCR产物点样浓度、PCR产物长度和荧光标记探针长度对SNP分型的影响。结果采用正反标记实验后,Ratio值随着PCR产物点样浓度的增加呈稳定趋势;PCR双链产物长度对信号值影响比较大,点样时其长度不宜太长,最好不超过450 bp;随荧光标记探针长度的增加,基因分型能力明显下降,长度为15 bp最佳,长度超过20 bp时,已基本没有区分能力。结论PCR产物点样浓度、PCR产物长度和荧光标记探针长度是双色荧光正相杂交SNP分型系统的重要影响因素,采取适当的PCR产物点样浓度、PCR产物长度和荧光标记探针长度,并采用正反标记实验,可以取得稳定、准确的基因分型效果。为进一步进行近交系小鼠遗传质量监测的研究奠定基础。  相似文献   

5.
目的研究SNP在近交系大鼠遗传检测中的应用。方法 选取大鼠20号染色体MHC所在P12区上的9个SNP位点,应用新建立的高保真酶特异性检测SNP基因分型技术对五种常用近交系大鼠(BN、F344、WKY、LEW、SHR)和两种新培育近交系大鼠(MIJ和HFJ)进行SNP多态性分析。结果五种常用近交系的SNP检测结果与Rat Genome Database网站提供的基因型数据一致,并检测确立了新品系的SNP基因型。同时绘制出七种近交系大鼠在该9个SNP位点的遗传扩增图谱。结论运用所筛选的9个SNP位点进行大鼠多态性分析,能够快速、可靠地对BN、F344、WKY、LEW、SHR及MIJ、HFJ进行遗传监测。  相似文献   

6.
目的将新近建立的单管双向等位基因专一性扩增(single-tube bi-directional allele specific amplification,SB-ASA)方法用于分析近交系小鼠基因组中的单核苷酸多态性(SNP)。方法以5个近交系小鼠为研究对象,采用SB-ASA方法对其16个SNP位点进行检测,并通过双盲实验和测序验证该方法的可靠性;且考察了该方法中PCR反应各成分及扩增条件对结果的影响。结果16个SNP位点,SB-ASA都成功地对5个品系小鼠进行了分型,与测序结果完全一致;双盲实验结果显示通过3个SNP位点即可鉴别5个品系。结论SB-ASA方法可用于近交系小鼠SNP的遗传检测,可望作为一种新的分子生物学遗传检测方法推广应用。  相似文献   

7.
目的建立小鼠冷冻胚胎和精子SNP(single nucleotide polymorphism)分型方法,用于冷冻胚胎和精子快速遗传鉴定方案。方法以中科院上海实验动物中心(国家啮齿类实验动物种子中心上海分中心)提供的小鼠冷冻胚胎和精子为样本,采用全基因组扩增技术和PCR-LDR分型技术建立小鼠冷冻物SNP遗传鉴定方法。结果全基因组扩增技术能大幅度增加冷冻胚胎样本的DNA总量;PCR-LDR分型方法适用于小鼠全基因组45个SNPs的分型;分型确定C57BL/6,BALB/c,FVB/NJ等胚胎和精子各10种近交系,SNP位点信息与测序结果一致;小鼠冷冻胚胎个数与SNPs检出个数成正比,当胚胎数达到12以上时SNP检出率100%。结论实现近交系小鼠冷冻胚胎和精子快速SNP基因分型及遗传质量鉴定。  相似文献   

8.
目的比较上海地区7品系常用近交系小鼠核心群的遗传特性。方法将筛选到的48对多态性丰富的微卫星引物组合优化,形成11组多重荧光PCR引物混合体系,对来自上海地区两大实验小鼠供应商的7品系近交系小鼠核心群的DNA样进行分型检测。利用遗传分析软件进行数据分析。结果来自两大供应商的7品系近交系小鼠在48个微卫星位点上都为纯合子。同一种群内小鼠的STR位点结果均一致;不同种群小鼠无论品系是否相同,相互间均存在STR位点差异。但相同品系不同种群近交系小鼠间的遗传距离与不同品系小鼠种群间的遗传距离相比均较近。在UPGMA聚类树中,相同品系的不同种群均首先两两聚成一类。C57BL/6小鼠与其他6品系小鼠的亲缘关系均较远。结论上海地区不同供应商的7品系近交系小鼠核心群间均存在STR位点差异。  相似文献   

9.
单核苷酸多态性(single nucleotide polymorphism,SNP)在对复杂疾病遗传易感性以及基于群体基因识别等方面的研究中起着非常重要的作用,尤其是对复杂疾病遗传易感性的研究,需要对大量样本进行分型.为了满足这种要求,亟待需要发展一种操作简单、成本较低、适于自动化和高通量的分型技术.利用磁性颗粒"在位"固相PCR(insituMPs-PCR)扩增的靶序列,通过与野生、突变标签探针以及双色荧光(Cy3,Cy5)通用检测子杂交实现对样本的分型.应用该方法,对96个样本的亚甲基四氢叶酸还原酶(MTHFR)基因C677T位点的多态性进行了检测,其野生型和突变型样本的正错配信号比大于4.5,杂合型正错配信号比接近1,分型结果与测序结果一致.  相似文献   

10.
目的利用微卫星技术对辽宁省6种近交系小鼠进行遗传质量分析。方法根据Mouse Genome Database和相关文献选取10个多态信息丰富的位点和引物,进行PCR扩增和PAGE电泳,对小鼠的遗传多态性进行研究。结果不同品系小鼠同一位点的扩增结果表现出多态性,同一品系同一位点表现单态性,所有小鼠的10个位点都处于纯合状态;遗传距离分析表明,C57BL/10与C57BL/6J小鼠之间的遗传距离最近,为0.1021,遗传距离最远的是BALB/c与C57BL/10、C57BL/6J,分别为0.1635和0.1614。结论运用所筛选的10个微卫星位点可以对近交系小鼠进行遗传质量检测,说明该方法具备可行性。  相似文献   

11.
Ensuring the genetic homogeneity of the mice used in laboratory experiments contributes to the Reduction aspect of the Three Rs, by maximising the quality of the data obtained from any animals that are used for these purposes, and ultimately reducing the numbers of animals used. Single nucleotide polymorphism (SNP) genotyping is especially suitable for use in the analysis of the genetic purity of model organisms such as the mouse, because bi-allelic markers remain fully informative when used to characterise crosses between inbred strains. Here, we attempted to apply a microarray-based method for a SNP marker to monitor the genetic quality of inbred mouse strains, so as to validate the reliability, stability and applicability of this SNP genotyping panel. The amplified PCR products containing four different SNP loci from four inbred mouse strains were spotted and immobilised onto amino-modified glass slides to generate a microarray. This was then interrogated through hybridisation with dual-colour probes, to determine the SNP genotypes of each sample. The results indicated that this microarray-based method could effectively determine the genotypes of the four selected SNPs with a high degree of accuracy. We have developed a new SNP genotyping technique for effective use in the genetic monitoring of inbred mouse strains.  相似文献   

12.
We have developed a genotyping system for detecting genetic contamination in the laboratory mouse based on assaying single-nucleotide polymorphism (SNP) markers positioned on all autosomes and the X chromosome. This system provides a fast, reliable, and cost-effective way for genetic monitoring, while maintaining a very high degree of confidence. We describe the allelic distribution of 235 SNPs in 48 mouse strains, thereby creating a database of polymorphisms useful for genotyping purposes. The SNP markers used in this study were chosen from publicly available SNP databases. Four genotyping methods were evaluated, and dynamic two-tube allele-specific PCR assays were developed for each marker and tested on a set of 48 inbred mouse strains. The minimal number of assays sufficient to distinguish groups consisting of different numbers of mouse strains was estimated, and a panel of 28 SNPs sufficient to distinguish virtually all of the inbred strains tested was selected. Amplifluor SNP detection assays were developed for these markers and tested on an extended list of 96 strains. This panel was used as a genetic quality control approach to monitor the genotypes of nearly 300 inbred, wild-derived, congenic, consomic, and recombinant inbred strains maintained at The Jackson Laboratory. We have concluded that this marker panel is sufficient for genetic contamination monitoring in colonies containing a large number of genetically diverse mouse strains and that reduced versions of the panel could be implemented in facilities housing a lower number of strains.  相似文献   

13.
Ji M  Hou P  Li S  He N  Lu Z 《Mutation research》2004,548(1-2):97-105
Screening disease-related single nucleotide polymorphism (SNP) markers in the whole genome has great potential in complex disease genetics and pharmacogenetics researches. It has led to a requirement for high-throughput genotyping platforms that can maximize the efficient screening functional SNPs with respect to accuracy, speed and cost. In this study, we attempted to develop a microarray-based method for scoring a number of genomic DNA in parallel for one or more molecular markers on a glass slide. Two SNP markers localized to the methylenetetrahydrofolate reductase gene (MTHFR) were selected as the investigated targets. Amplified PCR products from nine genomic DNA specimens were spotted and immobilized onto a poly-l-lysine coated glass slide to fabricate a microarray, then interrogated by hybridization with dual-color probes to determine the SNP genotype of each sample. The results indicated that the microarray-based method could determine the genotype of 677 and 1298 MTHFR polymorphisms. Sequencing was performed to validate these results. Our experiments successfully demonstrate that PCR products subjected to dual-color hybridization on a microarray could be applied as a useful and a high-throughput tool to analyze molecular markers.  相似文献   

14.
Parasitic nematode species have extremely high levels of genetic diversity, presenting a number of experimental challenges for genomic and genetic work. Consequently, there is a need to develop inbred laboratory strains with reduced levels of polymorphism. The most efficient approach to inbred line development is single pair mating, but this is challenging for obligate parasites where the adult sexual reproductive stages are inside the host, and thus difficult to experimentally manipulate. This paper describes a successful approach to single pair mating of a parasitic nematode, Haemonchus contortus. The method allows for polyandrous mating behaviour and involves the surgical transplantation of a single adult male worm with multiple immature adult females directly into the sheep abomasum. We used a panel of microsatellite markers to monitor and validate the single pair mating crosses and to ensure that the genotypes of progeny and subsequent filial generations were consistent with those expected from a mating between a single female parent of known genotype and a single male parent of unknown genotype. We have established two inbred lines that both show a significant overall reduction in genetic diversity based on microsatellite genotyping and genome-wide single nucleotide polymorphism. There was an approximately 50% reduction in heterozygous SNP sites across the genome in the MHco3.N1 line compared with the MoHco3(ISE) parental strain. The MHco3.N1 inbred line has subsequently been used to provide DNA template for whole genome sequencing of H. contortus. This work provides proof of concept and methodologies for forward genetic analysis of obligate parasitic nematodes.  相似文献   

15.
16.
A comprehensive SNP-based genetic analysis of inbred mouse strains   总被引:3,自引:1,他引:2  
Dense genetic maps of mammalian genomes facilitate a variety of biological studies including the mapping of polygenic traits, positional cloning of monogenic traits, mapping of quantitative or qualitative trait loci, marker association, allelic imbalance, speed congenic construction, and evolutionary or phylogenetic comparison. In particular, single nucleotide polymorphisms (SNPs) have proved useful because of their abundance and compatibility with multiple high-throughput technology platforms. SNP genotyping is especially suited for the genetic analysis of model organisms such as the mouse because biallelic markers remain fully informative when used to characterize crosses between inbred strains. Here we report the mapping and genotyping of 673 SNPs (including 519 novel SNPs) in 55 of the most commonly used mouse strains. These data have allowed us to construct a phylogenetic tree that correlates and expands known genealogical relationships and clarifies the origin of strains previously having an uncertain ancestry. All 55 inbred strains are distinguishable genetically using this SNP panel. Our data reveal an uneven SNP distribution consistent with a mosaic pattern of inheritance and provide some insight into the changing dynamics of the physical architecture of the genome. Furthermore, these data represent a valuable resource for the selection of markers and the design of experiments that require the genetic distinction of any pair of mouse inbred strains such as the generation of congenic mice, positional cloning, and the mapping of quantitative or qualitative trait loci.The content of this publication does not necessarily reflect the view or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.  相似文献   

17.
To date, microarray-based genotyping of large, complex plant genomes has been complicated by the need to perform genome complexity reduction to obtain sufficiently strong hybridization signals. Genome complexity reduction techniques are, however, tedious and can introduce unwanted variables into genotyping assays. Here, we report a microarray-based genotyping technology for complex genomes (such as the 2.3 GB maize genome) that does not require genome complexity reduction prior to hybridization. Approximately 200,000 long oligonucleotide probes were identified as being polymorphic between the inbred parents of a mapping population and used to genotype two recombinant inbred lines. While multiple hybridization replicates provided ~97% accuracy, even a single replicate provided ~95% accuracy. Genotyping accuracy was further increased to >99% by utilizing information from adjacent probes. This microarray-based method provides a simple, high-density genotyping approach for large, complex genomes.  相似文献   

18.
State-of-the-art, genome-wide assessment of mouse genetic background uses single nucleotide polymorphism (SNP) PCR. As SNP analysis can use multiplex testing, it is amenable to high-throughput analysis and is the preferred method for shared resource facilities that offer genetic background assessment of mouse genomes. However, a typical individual SNP query yields only two alleles (A vs. B), limiting the application of this methodology to distinguishing contributions from no more than two inbred mouse strains. By contrast, simple sequence length polymorphism (SSLP) analysis yields multiple alleles but is not amenable to high-throughput testing. We sought to devise a SNP-based technique to identify donor strain origins when three distinct mouse strains potentially contribute to the genetic makeup of an individual mouse. A computational approach was used to devise a three-strain analysis (3SA) algorithm that would permit identification of three genetic backgrounds while still using a binary-output SNP platform. A panel of 15 mosaic mice with contributions from BALB/c, C57Bl/6, and DBA/2 genetic backgrounds was bred and analyzed using a genome-wide SNP panel using 1449 markers. The 3SA algorithm was applied and then validated using SSLP. The 3SA algorithm assigned 85% of 1449 SNPs as informative for the C57Bl/6, BALB/c, or DBA/2 backgrounds, respectively. Testing the panel of 15 F2 mice, the 3SA algorithm predicted donor strain origins genome-wide. Donor strain origins predicted by the 3SA algorithm correlated perfectly with results from individual SSLP markers located on five different chromosomes (n=70 tests). We have established and validated an analysis algorithm based on binary SNP data that can successfully identify the donor strain origins of chromosomal regions in mice that are bred from three distinct inbred mouse strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号