首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
将南极假丝酵母脂肪酶A(cala)基因克隆至组成型表达载体pGAPZαA中,电激转入X-33,获得高效表达的CALA酵母工程菌株.发酵液上清经超滤浓缩、硫酸铵沉淀和阴离子交换层析等步骤,获得纯化的重组CALA,其比酶活达384.90 U/mg.该酶最适温度为70℃,最适pH值为8.0.经50℃保温2 h,仍含有60%水解酶活力;在pH7.0和8.0溶液中比较稳定.经DMSO处理1 h,仍保持90%的活性;非离子型表面活性剂能提高CALA的酶活,金属离子在不同程度上抑制CALA的酶活.  相似文献   

2.
[目的]将解脂耶氏酵母胞外脂肪酶Lip2展示在酿酒酵母表面,构建全细胞催化剂.[方法]采用PCR方法扩增得到解脂耶氏酵母胞外脂肪酶Lip2成熟肽编码基因LIP2,将其连接到AGA2基因的下游构建表面展示载体pCTLIP2.分别以橄榄油、三丁酸甘油酯和对硝基苯酚棕榈酸酯(pNPP)为底物检测展示的脂肪酶酶活.在此基础上,对野生菌及工程菌的酶学性质进行比较.[结果]展示Lip2的酿酒酵母重组菌株在半乳糖的诱导下,表现出水解橄榄油、三丁酸甘油脂以及pNPP的活性,20℃诱导72h时酶活达到最高,为182 U/g干细胞.对展示的Lip2的酶学性质研究表明,其最适温度为40℃,最适pH为8.0,温度稳定性比自由酶有所提高,50℃温浴4 h后残余酶活为其最大酶活的23.2%.以不同碳链长度的对硝基苯酚酯为底物检测其底物特异性,结果显示其水解C8,C12,C16对硝基苯酚酯活性相近,均远高于对硝基苯酚丁酸酯(C4)的水解酶活.[结论]对于Lip2,a凝集素系统是一个有效的展示系统,利用该系统成功将Lip2展示在酿酒酵母表面,从而构建了酿酒酵母全细胞催化剂,该全细胞催化剂具有良好的潜在应用前景.  相似文献   

3.
表面展示酶作为全细胞催化剂具备诸如能提高酶的稳定性、省去纯化过程、节约成本等优点。脂肪酶是应用最为广泛的工业酶之一。本研究利用酿酒酵母细胞壁蛋白Cwp2作为锚定蛋白,将解脂耶氏酵母脂肪酶Lip2展示在酿酒酵母细胞表面,以制备脂肪酶全细胞催化剂。Lip2被融合到Cwp2的N端,Cwp2通过其C端的GPI锚定信号共价结合到细胞壁上。表面展示的Lip2可以水解三丁酸甘油酯及对硝基苯酚辛酸酯(pNPC),其pNPC水解酶活达到4.6U/g干细胞。作为全细胞催化剂,表面展示的Lip2具备良好的催化特征,其最适温度为40°C,最适pH为8.0,同时还具备良好的有机溶剂稳定性。  相似文献   

4.
从南极假丝酵母(Candida antarctica)基因组克隆得到南极假丝酵母脂肪酶B(Candida antarctica Lipase B, CALB)全基因片段, 利用连接肽celA Linker将CALB与酿酒酵母细胞表面展示蛋白a-凝集素的C端连接融合, 构建表面展示载体pICAS-celAL-CALB, 转化酵母后获得重组酵母菌Saccharomyces cerevisiae pICAS-celAL-CALB。该重组酵母菌经葡萄糖诱导表达及分析, 表明CALB已在酿酒酵母细胞表面成功展示, 水解活力达26.26 u/(g·dry cell)。重组酵母菌经冻干能有效地实现在非水相中全细胞催化己酸和乙醇酯化合成己酸乙酯。反应物己酸与乙醇的摩尔比为1:1.25, 己酸乙酯的产率为98.0%, 具有较好的操作稳定性。  相似文献   

5.
从南极假丝酵母(Candida antarctica)基因组克隆得到南极假丝酵母脂肪酶B(Candida antarctica Lipase B, CALB)全基因片段, 利用连接肽celA Linker将CALB与酿酒酵母细胞表面展示蛋白a-凝集素的C端连接融合, 构建表面展示载体pICAS-celAL-CALB, 转化酵母后获得重组酵母菌Saccharomyces cerevisiae pICAS-celAL-CALB。该重组酵母菌经葡萄糖诱导表达及分析, 表明CALB已在酿酒酵母细胞表面成功展示, 水解活力达26.26 u/(g·dry cell)。重组酵母菌经冻干能有效地实现在非水相中全细胞催化己酸和乙醇酯化合成己酸乙酯。反应物己酸与乙醇的摩尔比为1:1.25, 己酸乙酯的产率为98.0%, 具有较好的操作稳定性。  相似文献   

6.
【目的】构建疏棉状嗜热丝孢菌脂肪酶(Thermomyces lanuginosus lipase,TLL)在毕赤酵母GS115中的细胞表面展示体系,筛选展示成功且酶活力及展示率较高的重组子作为全细胞催化剂,并研究其酶学性质。【方法】克隆TLL基因tll,以酿酒酵母细胞壁蛋白Sed1p为锚定蛋白,构建表面展示载体pPICZαA-TLS。重组载体经SacⅠ线性化后转入毕赤酵母GS115中,经三丁酸甘油酯平板检测及摇甁发酵筛选获得高酶活力的毕赤酵母重组子,采用抗FLAG标签一抗和R-PE荧光素标记的二抗处理细胞后,进行荧光显微镜检测和流式细胞仪分析,并考察全细胞催化剂的最适反应温度和pH、金属离子耐受性等酶学性质。【结果】成功构建TLL毕赤酵母细胞表面展示体系,筛选到1株具有三丁酸甘油酯和橄榄油水解活力的克隆子,经1%的甲醇诱导发酵120 h后,水解橄榄油酶活力达257.8 U/g干细胞。经抗体处理后的重组菌发酵细胞在荧光显微镜下呈现强烈的红色荧光,流式细胞仪分析结果也证实脂肪酶被成功展示在酵母细胞表面,展示率达98.36%。展示的TLL作为全细胞催化剂水解对硝基苯酚丁酸酯(pNPB)的最适温度为30℃,最适pH为8.0,且具备良好的热稳定性和有机溶剂耐受性;K+、Ca2+、Mg2+对其有微弱的激活作用,Mn2+、Ni2+则有微弱的抑制作用,Cu2+的抑制作用较强,而EDTA、SDS、Tween 20对酶活力影响不明显。【结论】首次将TLL脂肪酶成功展示在毕赤酵母细胞表面,获得具有较高水解活力和良好酶学特性的全细胞催化剂,为表面展示TLL脂肪酶的规模化应用奠定了技术基础。  相似文献   

7.
以His标签检测蛋白的表达, 利用酿酒酵母表面展示系统, 成功地将HIV-1 gp41片段锚定在酵母表面, 并检测到gp41的活性。以pMD18T-gp41为模板, 通过PCR技术克隆了gp41基因, 将gp41基因通过双酶切连接到载体pICAS-His上,构建了gp41酵母表面展示载体, 并将其转化至酿酒酵母(Saccharomyces cerevisiae)MT8-1中。重组菌经培养, 利用免疫荧光染色方法进行染色, 显微镜观察发现重组酵母细胞表面有绿色荧光, 流式细胞仪结果进一步证实gp41正确折叠展示于酵母细胞表面。采用不同浓度的葡萄糖培养基进行表达优化。当葡萄糖浓度为1%时, 82.46%的酵母细胞表达了gp41抗原; 随着葡萄糖浓度升高, 蛋白表达受到抑制。  相似文献   

8.
以His标签检测蛋白的表达, 利用酿酒酵母表面展示系统, 成功地将HIV-1 gp41片段锚定在酵母表面, 并检测到gp41的活性。以pMD18T-gp41为模板, 通过PCR技术克隆了gp41基因, 将gp41基因通过双酶切连接到载体pICAS-His上,构建了gp41酵母表面展示载体, 并将其转化至酿酒酵母(Saccharomyces cerevisiae)MT8-1中。重组菌经培养, 利用免疫荧光染色方法进行染色, 显微镜观察发现重组酵母细胞表面有绿色荧光, 流式细胞仪结果进一步证实gp41正确折叠展示于酵母细胞表面。采用不同浓度的葡萄糖培养基进行表达优化。当葡萄糖浓度为1%时, 82.46%的酵母细胞表达了gp41抗原; 随着葡萄糖浓度升高, 蛋白表达受到抑制。  相似文献   

9.
将白地霉脂肪酶基因N端与酿酒酵母FLO絮凝结构域序列融合,构建成脂肪酶毕赤酵母表面展示载体并转化毕赤酵母GS115。免疫荧光检测证实脂肪酶已展示于毕赤酵母细胞表面。甲醇诱导96 h后展示酶活性达到81 U/g干细胞,酶的热稳定性较游离酶有较大提高,50℃孵育4 h后酶活仍保持初始酶活70%以上。  相似文献   

10.
糖蛋白(Glycoprotein, G)作为鲤春病毒血症病毒(Spring Virernia of Carp Virus, SVCV)主要的抗原蛋白, 已成为现阶段SVCV病毒检测、抗体制备以及疫苗研制的热点。为了对其进行酵母表面展示, 研究以SVCV-shlj1分离株基因组为模板, 通过RT-PCR技术, 体外扩增获得SVCV表面糖蛋白的基因开放阅读框(1530 bp)片段, 将其克隆至酵母表面展示载体pYD1, 构建重组质粒pYD1-G。利用电转化方法将重组质粒pYD1-G导入酿酒酵母EBY100感受态细胞, 经YNB选择培养基筛选和菌液PCR的鉴定, 挑选出阳性转化子(命名为EBY100-pYD1-G), 对其进行2%半乳糖诱导。利用细胞免疫荧光和流式细胞仪检测G蛋白的酵母表面展示情况。细胞免疫荧光结果显示, 诱导后的酵母细胞EBY100-pYD1-G能产生特异性红色荧光, 且随着诱导时间的增加, 红色荧光的酵母细胞所占比例不断增加, 各组之间差异显著(P< 0.05)。流式细胞仪检测结果显示, 酵母细胞的荧光强度与诱导时间呈正比, 其中诱导48h与72h的酵母细胞荧光强度不存在显著差异, 基本趋于稳定不变的状态。因此, 选取诱导48h为酵母表面展示的最佳诱导时间。上述研究结果表明SVCV的G蛋白已经成功展示于酿酒酵母细胞表面, 研究为鲤春病毒血症酵母口服疫苗的研发奠定了前期基础。  相似文献   

11.
The endoglucanase gene endo753 from Aspergillus flavus NRRL3357 strains was cloned, and the recombinant Endo753 was displayed on the cell surface of Saccharomyces cerevisiae EBY100 strain by the C-terminal fusion using Aga2p protein as anchor attachment tag. The results of indirect immunofluorescence and Western blot confirmed the expression and localization of Endo753 on the yeast cell surface. The hydrolytic activity test of the whole-cell enzyme revealed that Endo753 immobilized on the yeast cell surface had high endoglucanase activity. The functional characterization of the whole-cell enzyme was investigated, and the whole-cell enzyme displayed the maximum activity at pH 8 and 50 °C. The enzyme was stable in a pH range of 7.0–10.0. Furthermore, the whole-cell enzyme displayed high thermostability below 50 °C and moderate stability between 50 and 70 °C. These properties make endo753 a good candidate in bioethanol production from lignocellulosic materials after displaying on the yeast cell surface.  相似文献   

12.
Marine yeast strain 1, isolated from the surface of a marine alga, was found to secrete a large amount of inulinase into the medium. This marine yeast was identified as a strain of Pichia guilliermondii according to the results of routine yeast identification and molecular methods. The crude inulinase produced by this marine yeast worked optimally at pH 6.0 and 60°C. The optimal medium for inulinase production was seawater containing 4.0% (w/v) inulin and 0.5% (w/v) yeast extract, while the optimal cultivation conditions for inulinase production were pH 8.0, 28°C and 170 rpm. Under the optimal conditions, over 60 U ml−1 of inulinase activity was produced within 48 h of fermentation in shake flasks. A large amount of monosaccharides and a trace amount of oligosaccharides were detected after the hydrolysis, indicating that the crude inulinase had a high exoinulinase activity.  相似文献   

13.
About 500 strains of dextranase producing microorganisms were examined in detail for pH- activity and enzyme stability. A gram positive bacterium identified as belonging to the genus Brevibacterium was found to produce alkaline dextranase. Maximal dextranase synthesis was obtained when grown aerobically at 26°C for 3 days in a medium containing 1 % dextran, 2% ethanol, 1 % polypeptone and 0.05 % yeast extract together with trace amounts of inorganic salts.

Brevibacterium dextranase had an optimum pH of 8.0 for activity at 37°C and an optimal temperature at 53°C at pH 7.5. The enzyme was quite stable over the range of pH 5.0 to 10.5 on 24 hr incubation at 37°C, especially on alkaline pH. The enzyme was also heat stable at 60°C for 10 min.  相似文献   

14.
A Streptomyces sp. was isolated that produced novel thermoalkalotolerant cellulase activity after growth on crystalline cellulose at 50°C. Three major components of the cellulases (CMCase, Avicelase and cellobiase) were produced with maximal activities (11.8, 7.8 and 3.9 IU/ml) and maximum specific activities 357, 276 and 118 IU/mg protein, respectively, after 120 h growth. Maximum CMCase activity was between 50 and 60°C measured over 3 h. The enzyme also retained 88% of its maximum activity at 70°C and pH 5, and 80% of the activity at pH 10 and 50°C when assayed after 1 h. After incubation at 40°C for 1 h with commercial detergent (Tide) at pH 11, 95% activity was retained. The enzyme mixture produced glucose from crystalline cellulose.  相似文献   

15.
This paper reports the production of a cellulase-free and alkali-stable xylanase in high titre from a newly isolated Bacillus pumilus SV-85S using cheap and easily available agro-residue wheat bran. Optimization of fermentation conditions enhanced the enzyme production to 2995.20 ± 200.00 IU/ml, which was 9.91-fold higher than the activity under unoptimized basal medium (302.2 IU/ml). Statistical optimization using response-surface methodology was employed to obtain a cumulative effect of peptone, yeast extract, and potassium nitrate (KNO3) on enzyme production. A 23 central composite design best optimized the nitrogen source at the 0 level for peptone and yeast extract and at the −α level for KNO3, along with 5.38-fold increase in xylanase activity. Addition of 0.1% tween 80 to the medium increased production by 1.5-fold. Optimum pH for xylanase was 6.0. The enzyme was 100% stable over the pH range from 5 to 11 for 1 h at 37°C and it lost no activity, even after 3 h of incubation at pH 7, 8, and 9. Optimum temperature for the enzyme was 50°C, but the enzyme displayed 78% residual activity even at 65°C. The enzyme retained 50% activity after an incubation of 1 h at 60°C. Characteristics of B. pumilus SV-85S xylanase, including its cellulase-free nature, stability in alkali over a long duration, along with high-level production, are particularly suited to the paper and pulp industry.  相似文献   

16.
An extracellular alkaline carboxymethycellulase (CMCase) from Bacillus subtilis was purified by salt precipitation followed by anion-exchange chromatography using DEAE-Sepharose. The cell-free supernatant containing crude enzyme had a CMCase activity of 0.34 U/mg. The purified enzyme gave a specific activity of 3.33 U/mg, with 10-fold purification and an overall activity yield of 5.6%. The purified enzyme displayed a protein band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular size of 30 kDa, which was also confirmed by zymogram analysis. The enzyme displayed multisubstrate specificity, showing significantly higher activity with lichenan and β-glucan as compared to carboxymethylcellulose (CMC), laminarin, hydroxyethylcellulose, and steam-exploded bagasse, and negligible activity with crystalline substrate such as Avicel and filter paper. It was optimally active at pH 9.2 and temperature 45°C. The enzyme was stable in the pH range 6–10 and retained 70% activity at pH 12. Thermal stability analysis revealed that the enzyme was stable in temperature range of 20°C to 45°C and retained more than 50% activity at 60°C for 30 min. The enzyme had a Km of 0.13 mg/ml and Vmax of 3.38 U/mg using CMC as substrate.  相似文献   

17.
Total of 171 alkaliphilic actinomycetes were evaluated for extracellular RNase production and Streptomyces sp. M49-1 was selected for further experiments. Fermentation optimization for RNase production was implemented in two steps using response surface methodology with central composite design. In the first step, the effect of independent fermentation variables including temperature, initial pH and process time were investigated. After identification of carbon and nitrogen sources affecting the production by one variable at a time method, concentrations of glucose and yeast extract and also inoculum size were chosen for the second central composite design. A maximum RNase activity was obtained under optimal conditions of 4.14 % glucose concentration, 4.63 % yeast extract concentration, 6.7 × 106 spores as inoculum size for 50 ml medium, 42.9 °C, 91.2 h process time and medium initial pH 9.0. Optimum activity of the enzyme is achieved at pH 11 and temperature 60 °C. The enzyme is highly stable at pH range 9.0–12.0 and at 90 °C after 2 h. Statistical optimization experiments provide 2.25 fold increases in the activity of alkalotolerant and thermostable RNase and shortened the fermentation time compared to that of unoptimized condition. The members of Streptomyces can be promising qualified RNase producer for pharmaceutical industries.  相似文献   

18.
Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) fromBacillus circulans ATCC 21783 was purified by ultrafiltration and a consecutive starch adsorption. Total enzyme yield of 75.5% and purification factor of 13.7 were achieved. CGTase was most active at 65°C, possessed two clearly revealed pH-optima at 6.0 and 8.6 and retained from 75 to 100% of its initial activity in a wide range of pH, between 5.0 and 11.0. The cyclising activity was enhanced by 1 mM CaCl2 or 4 mM CoCl2. The enzyme was thermostable up to 70°C, and 64% of the original activity remained at 70°C after 30 min heat treatment. Up to 41% conversion into cyclodextrins was obtained from 40 g l?1 starch without using any additives. This CGTase produced two types of cyclodextrins, beta and gamma, in a ratio 73:27 after 4 h reaction time at 65°C. This feature of the enzyme could be of interest for industrial cyclodextrin production.  相似文献   

19.
—Samples of South Vietnamese soils intensely treated with Agent Orange defoliant were tested for the presence of fungi and actinomycetes with an elevated phenol oxidase activity. As a result, a fast-growing nonsporulating strain producing neutral phenol oxidases was isolated and identified asMycelia sterilia INBI2-26. The strain formed extracellular phenol oxidases during surface growth on a liquid medium in the presence of guayacol and copper sulfate, as well as during submerged cultivation in liquid medium containing wheat bran and sugar beet pulp. Isoelectric focusing of the culture liquid revealed two major catechol oxidases (PO1 and PO2) with pI 3.5 and 8, respectively. The enzymes were purified by Ultrafiltration, ion exchange chromatography, and exclusion HPLC. Both were stable between pH 3 and 8. At pH 8 and 40°C., they retained at least 50% of activity after incubation for 50 h. At 50°C., PO2 was more stable and retained 40% of activity after 50 h, whereas PO1 was inactivated in 3–6 h. The pH-optimutns for PO1 and PO2 toward catechol were 6 and 6.5; and theK m values were 1.5±0.35 and 1.25±0.2 mM, respectively. PO1 and PO2 most optimally oxidized 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) at pH 3 withK m values 1.6±0.18 and 0.045±0.01 mM, respectively, but displayed no activity toward tyrosine. The PO2 absorbance spectrum had a peak at 600 nm, thus indicating the enzyme to be a member of the laccase family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号