首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
利用在大肠杆菌中表达的藻红蓝蛋白α-亚基脱辅基蛋白与藻蓝胆素PCB重组,吸收光谱、荧光光谱和高效可逆光化学性质分析表明,藻红蓝蛋白α-亚基脱辅基蛋白与藻蓝胆素直接重组,生成的胆素蛋白中辅基色素仍为藻蓝胆素;而藻红蓝蛋白α-亚基脱辅基蛋白与藻蓝胆素在藻红蓝蛋白α-亚基重组酶(pecE和pecF基因的表达产物)催化下重组,生成的胆素蛋白中辅基色素转变为藻紫胆素,并具有高效可逆光化学特性。  相似文献   

2.
谷氨酰内切酶能特异性切割谷氨酸、天冬氨酸残基羧基端结合的肽键。将含有V8蛋白酶突变体(V125T)基因的表达质粒的重组大肠杆菌BL21(DE3),在50L发酵罐中发酵,融合蛋白为可溶性表达,可得菌湿重50g/L,相对蛋白表达量为33%。融合蛋白采用GST亲和纯化、肠激酶激活、DEAE-FF阴离子交换层析,得到纯的V8(V125T)突变体,经纯化后可获得0.998mg蛋白/g菌(湿重),比活为13.47 U/mg pro.纯化过程的酶活回收率达到了97.9%。对纯酶进行酶学性质分析,以Z-Phe-Leu-Glu-p NA作为底物测得V8(V125T)蛋白酶的Km为0.339mmol/L,Vmax为16.642μmol/min。其最适pH为8.0,在pH4.0~10.0之间较稳定;最适反应温度在45℃,12h内在4~35℃有很好的温度稳定性;25℃条件下1mmol/L的金属离子对酶具有不同程度的影响,其中Fe~(3+)的抑制作用最强;2mol/L尿素及1mmol/L EDTA对酶活性无影响,在0.1%SDS中保存12h、在0.5%SDS中4h和在1%SDS中1h,活性均能维持90%以上,在0.5%,0.1%SDS保存12h,仍能保持80%和64%的活性,与未突变的重组V8蛋白酶相比,该突变体对SDS的耐受性得到极大提高。  相似文献   

3.
用分子定向进化技术,在酶活力和热稳定性双重选择压力下,筛选到了一体Keat/KM是天然酶47倍的进化酶。用FT-IR方法,测定了α-天门冬氨酰二须酶及其进化酶的酰胺I带图普,定量估算了天然酶和进化酶的各种二级结构含量。天然酶中,β折叠结构含量为28.5%,α螺旋结构含量为33%,这与园二色谱测量α螺旋结构为33%的结果有很好的一致,剩余的残基形成不同类型的转角和无规结构,其总含量为38.5%。在进化酶中,β折叠结构含量为26.8%,α螺旋结构含量为315,其它结构为不同类型的转角和无规结构,含量为42.2%。  相似文献   

4.
藻红蓝蛋白裂合异构酶对几种脱辅基藻胆蛋白的催化作用   总被引:1,自引:0,他引:1  
PecE/PecF是层理鞭枝藻藻红蓝蛋白α亚基(α-PEC)生物合成的裂合异构酶。以4种脱辅基藻胆蛋白为底物,初步研究了PecE/PecF对底物蛋白的催化专一性。结果表明,PecE/PecF可催化藻蓝胆素(PCB)与高度同源的层理鞭枝藻不同亚种的α-PEC脱辅基蛋白的体外重组,也可催化经128位Trp定点突变到Phe而得到的α-PEC脱辅基蛋白的体外重组,但PecE/PecF对PCB与藻蓝蛋白α亚基(α-CPC)脱辅基蛋白的体外重组无催化作用。A-PEC脱辅基蛋白的重组不受表面活性剂Triton X-100的影响,而Triton X-100可改进PCB与α-CPC脱辅基蛋白的重组。  相似文献   

5.
[目的]探索不同条件对包涵体复性的影响,优化重组融合蛋白包涵体中释放大环肽的工艺条件。[方法]对纯化后的包涵体进行不同变性液、透析方式及是否超声破碎处理的比较;并在此基础上探讨不同透析温度、谷胱甘肽浓度与L-Arg浓度对大环肽产量的影响。采用Tanon凝胶分析系统与紫外吸收法对大环肽的产量进行分析。[结果]使用8 mol/L的尿素溶解包涵体后,获得的上清液在25℃条件下,在含有1 mmol/L GSH、0.1 mmol/L GSSG、0.8mmol/L L-Arg的透析液中进行梯度透析,其得率为每克包涵体获得约1.4 mg大环肽。[结论]成功从包涵体中获得大环肽并优化工艺条件。  相似文献   

6.
根据信号肽N端电荷数,选择Sec及Tat两种途径的信号肽构建枯草芽孢杆菌穿梭质粒,首次实现Bacillus cereus源亮氨酸脱氢酶基因在Bacillus subtilis中的分泌表达。Tat途径信号肽Pho D促进蛋白质分泌的效果最好,胞外酶活力达20.25U/ml,为不添加信号肽的2.2倍,信号肽N端较多的电荷数,可能有利于多聚体蛋白的分泌。对表达产物进行纯化和酶学性质测定。结果表明,纯酶比酶活为13U/mg;L-Leucine为底物时酶的K_m为6.17mmol/L,V_(max)为14.49μmol/(L·min);底物特异性研究发现,酶与天然底物L-Leucine的亲和性最好,对一些脂肪族氨基酸也有活性,对芳香族氨基酸L-Phenylalanine无活性;酶的最适pH为10.5~12.0,pH稳定范围为5.0~11.0;最适反应温度为55℃;圆二色谱变温扫描酶二级结构变化,α螺旋含量随温度升高逐渐降低;差示扫描微量热技术(DSC)测定酶的解折叠温度(Tm值)为64.13℃,表明该酶具有较好耐热性。  相似文献   

7.
短双歧杆菌(Bifidobacterium breve 203)α_D_半乳糖苷酶基因(aga1)被克隆到大肠杆菌温度诱导表达质粒pBV220中,构建重组质粒pBVaga1,转入大肠杆菌进行温度诱导表达,得到的重组酶Aga1在大肠杆菌DH5α、DH10B和BL21中的比活分别为28.08、19.44和13.85U/mg, 均高于短双歧杆菌α_D_半乳糖苷酶的比活1.76U/mg。重组质粒pBVaga1在E. coli BL21中稳定性较好。重组酶Aga1蛋白亚基分子量约67kD,最适反应温度为45℃,酶在40℃以下稳定,60℃仅剩余约5%的酶活性,70℃时酶全部失活;最适反应pH为4.0~4.4,酶在pH 3.6~6.0范围内稳定;酶对p_硝基苯酚_α_半乳糖苷的Km=1.43mmol/L,Vmax=35.71μmol/(L·min),对蜜二糖的Km=261mmol/L,Vmax=63.69μmol/(L·min);酶在蜜二糖、棉子糖水解体系中不显示转糖基活性。结果说明Aga1与已经报道的一种短双歧杆菌的α_D_半乳糖苷酶不同,是新发现的一种短双歧杆菌的α_D_半乳糖苷酶。  相似文献   

8.
目的探讨二氢杨梅素(DHM)对高糖(HG)诱导的心肌细胞H9C2损伤的影响及机制。 方法细胞处理分为对照组、35 mmol/L HG组、35mmol/L HG+50 μmol/L DHM组及50 μmol/L DHM组。CCK-8法检测细胞活力,化学比色法检测丙二醛(MDA)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)水平,流式细胞术检测ROS水平;荧光定量PCR法及Elisa法分别检测TNFα、IL1β、IL6 mRNA和含量,Western Blotting检测p-IκBα、IκBα蛋白及核蛋白NF-κB p65的表达水平。采用单因素方差分析进行组间比较。 结果对照组、35mmol/?L HG组、35?mmol/L HG+50?μmol/L DHM组、35?mmol/L HG+100?μmol/L DHM组的细胞活力分别是(100±0.00) ﹪、(52.23±5.69) ﹪、(74.58±6.12) ﹪和(86.04±3.76)﹪,差异具有统计学意义(F?= 40.61,P?< 0.01)。对照组、35?mmol/L HG组和35?mmol/L HG+100?μmol/L DHM组的MDA和ROS水平,SOD和CAT活性分别是(0.44±0.06)?nmol/?ml,(2.33±0.40)?nmol/?ml,(1.48±0.41)?nmol/ml、(156.0±9.00)U/ml,(325.3±10.69)U/ml,(244.0±9.54)?U/ml,(10.62± 1.59)?U/?ml,(5.18±0.34)U/ml,(7.75±0.53)U/ml,(11.31±0.98)?U/ml,(5.20±1.12)?U/?ml和(8.06±0.66)U/ml,差异具有统计学意义(F?= 30.34,29.75,14.72,P均< 0.01)。DHM预处理可明显拮抗HG对H9C2心肌细胞TNFα、IL1β和IL6 mRNA及含量的上调作用,差异存在统计学意义(P?均< 0.01)。DHM可抑制HG对H9C2心肌细胞p-IκBα/?IκBα蛋白和核蛋白NF-κB p65表达的增加作用,差异存在统计学意义(P均< 0.01)。 结论DHM可拮抗HG诱导的H9C2心肌细胞损伤,这可能与其抑制NF-κB信号通路有关。  相似文献   

9.
为了探讨利用褐脉少花龙葵毛状根来修复重金属镉(Cd)污染的可能性,采用溶液培养法研究了Cd单独及其与钙(Ca)组合对褐脉少花龙葵毛状根生长、抗氧化酶超氧化物歧化酶(SOD)和过氧化物酶(POD)活性及对Cd吸收的影响。结果表明,Cd≤50μmol/L时能促进毛状根生长,而高于100μmol/LCd则抑制毛状根生长,使其侧根根尖变褐和变短,数目减少。与对照相比,不同浓度Cd培养的毛状根可溶性蛋白含量和SOD活性先升高后逐渐下降;其丙二醛(MDA)含量显著提高;100μmol/LCd使毛状根POD活性逐渐升高,但300μmol/LCd则使毛状根POD活性逐渐降低。与对照(仅添加100μmol/L或300μmol/LCd的毛状根)相比,Cd和10~30mmol/LCaCl2组合培养使毛状根可溶性蛋白含量和MDA含量降低;但提高其SOD活性;而100μmol/LCd和10~30mmol/LCaCl2结合培养的毛状根POD活性均比对照低;而300μmol/LCd和10~30mmol/LCaCl2结合培养的毛状根POD活性则均比对照提高。原子吸收分光光度法测定结果表明,毛状根吸收和吸附的重金属Cd含量随着培养基中Cd浓度的升高而增加。但外源加入10~30mmol/LCaCl2能减少毛状根对Cd的吸收,并调节其抗氧化酶SOD和POD活性,降低其膜脂过氧化水平而解除重金属Cd对毛状根生长的抑制或毒害。  相似文献   

10.
意蜂蜂王浆超氧化物歧化酶的分离纯化及部分性质   总被引:4,自引:0,他引:4  
以意蜂Apis mellifera蜂王浆为材料,经过硫酸铵分段盐析,DEAE-Sepharose 柱层析和Sephacryl S-200凝胶过滤,得到纯化的超氧化物歧化酶(SOD),纯化倍数104.00,比活力53.05 U/mg。该SOD经SDS-PAGE显示单一蛋白带。温度对该酶活力的影响较小。Cu、Zn、Fe和Mn等元素含量测定发现该酶只含有Cu和Zn。酶经圆二色谱测定后,其α螺旋、β折叠和无规则卷曲蛋白构型的含量分别为26.1%、53.8%和22.0%。等电聚焦电泳测得酶的等电点为4.69、4.85和5.01。NR/R单向和双向SDS-PAGE表明该酶含有链内二硫键。氨基酸组成分析发现该酶由约402个氨基酸残基组成,其中Asp、Gly、Leu、Ala、Glu和Val的含量较高。脲可抑制SOD活性,并使其紫外光谱发生变化,荧光发射峰强度变小。溴乙酸(BrAc)抑制酶的活力,使其紫外光谱发生变化,荧光发射峰强度变小。二巯基苏糖醇(DTT)使酶的活力发生变化,紫外吸收峰增大,荧光发射峰变小。  相似文献   

11.
UDP-galactose 4-epimerase from yeast (Kluyveromyces fragilis) is a homodimer of total molecular mass 150 kDa having possibly one mole of NAD/dimer acting as a cofactor. The molecule could be dissociated and denatured by 8 M urea at pH 7.0 and could be functionally reconstituted after dilution with buffer having extraneous NAD. The unfolded and refolded equilibrium intermediates of the enzyme between 0-8 M urea have been characterized in terms of catalytic activity, NADH like characteristic coenzyme fluorescence, interaction with extrinsic fluorescence probe 1-anilino 8-naphthelene sulphonic acid (ANS), far UV circular dichroism spectra, fluorescence emission spectra of aromatic residues and subunit dissociation. While denaturation monitored by parameters associated with active site region e.g. inactivation and coenzyme fluorescence, were found to be cooperative having delta G between -8.8 to -4.4 kcals/mole, the overall denaturation process in terms of secondary and tertiary structure was however continuous without having a transition point. At 3 M urea a stable dimeric apoenzyme was formed having 65% of native secondary structure which was dissociated to monomer at 6 M urea with 12% of the said structure. The unfolding and refolding pathways involved identical structures except near the final stage of refolding where catalytic activity reappeared.  相似文献   

12.
Lipoxygenases contain a unique nonheme iron cofactor with a redox role in the catalyzed reaction. The conditions for the extraction of the metal atom were investigated for one of the soybean lipoxygenase isoenzymes. Removal of the iron by o-phenanthroline was attained in the presence of substrate under anaerobic conditions, but the apoenzyme could not be isolated and reconstituted. The freshly regenerated sodium form of Chelex-100 also removes the iron atom from native soybean lipoxygenase 3, but only in sodium bicarbonate buffer at pH 8.0. The soluble but inactive apoenzyme was reconstituted with ferric ammonium sulfate in Tris--HCl buffer at pH 7.0. Stoichiometric iron in the reconstituted enzyme was established using inductively coupled plasma-atomic emission spectroscopy. The reconstituted enzyme contained 90 +/- 10% of the specific activity of the native enzyme. The native configuration of the reconstituted iron site was confirmed by electron paramagnetic resonance spectroscopy.  相似文献   

13.
Cytochrome oxidase (EC 1.9.3.2) from Pseudomonas aeruginosa contains heme d1 and heme c in an equimolar ratio. The heme d1 can be removed from the enzyme with acidified acetone leaving an apoenzyme that contains heme c but has no oxidase activity. Reconstitution of the apoenzyme in neutral 6 M urea with heme d1 yields a reconstituted product which, after removal of the urea, has 90 to 100% of the oxidase activity of the native enzyme, a 1:1 molar ratio of the heme groups, and is indistinguishable from the native on the basis of its absorption spectral properties and its EPR spectrum. The apoenzyme can also be reconstituted with heme a, deuteroheme, hematoheme, mesoheme, and protoheme but only the heme a yields a product with any oxidase activity. The properties of these reconstituted products are compared.  相似文献   

14.
31P nuclear magnetic resonance spectra and enzymatic activities are compared for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) species with different zinc contents. The enzyme containing two Zn2+ per protein dimer exists in two forms; one, prepared by dialysis of native enzyme, has full enzymatic activity and a 31P magnetic resonance spectrum similar to but distinguishable from that of the native enzyme containing four or more Zn2+. The other form, prepared by restoring two Zn2+ to apoenzyme, has low enzymatic activity and a 31P magnetic resonance spectrum that indicates stoichiometric binding of phosphate, but otherwise altered properties. Reconstituted enzyme with four Zn2+ is similar to but distinguishable from native enzyme with four Zn2+. Chromatography on DEAE-cellulose can separate apoenzyme and enzyme containing two Zn2+ and suggests that the binding of a pair of Zn2+ is cooperative.  相似文献   

15.
Subunit structure and hybrid formation of bovine pyruvate kinases   总被引:1,自引:0,他引:1  
After denaturing either type M or L pyruvate kinase by guanidine hydrochloride, urea, or low pH, enzymatic activity and quaternary structure can be recovered by diluting the enzyme into buffer containing beta-mercaptoethanol. After denaturation of type M pyruvate kinase by guanidine hydrochloride, the yield and polarization of the intrinsic protein fluorescence, as well as most of the circular dichroism characteristic of the native enzyme, were regained very rapidly, while enzymatic activity was recovered much more slowly. Under the conditions used, about 50% of the original M and 30-50% of the original type L activity were typically recovered. Average half-times for recovery of enzymatic activity were 37 min for type M and 104 min for type L but depended somewhat on the renaturation buffer and on protein concentrations in the renaturation medium. If types M and L pyruvate kinases are renatured together, an approximately random recombination of the two subunits types results in a five-membered hybrid set. We have used this hybridizability to determine the kinetics of reformation of the native tetramer by denaturing each isozyme and beginning its renaturation separately at various times mixing the two isozymes and continuing their renaturation together. These studies indicate that reformation of stable tetramers occurs relatively slowly, qualitatively paralleling the regain of enzymatic activity, and that tetramer formation may be necessary for enzymatic activity. Using a similar technique to test for spontaneous dissociation of the native isozymes in buffer, we find that type L, but not type M, reversibly dissociates into dimers and monomers in buffer solutions. This dissociation is decreased by the presence of the substrate, phosphoenolpyruvate, by Mg2+ ions, or by the allosteric effector, fructose bisphosphate.  相似文献   

16.
A tyrosine-derived free radical in apogalactose oxidase   总被引:1,自引:0,他引:1  
Oxidation of apogalactose oxidase with ferricyanide leads to the formation of a stable free radical exhibiting distinctive optical absorption and EPR spectral features. The radical is associated with absorption in both near-UV and near-IR spectral regions, and its EPR spectrum is characteristic of an aromatic free radical with gav = 2.005. Reconstitution of both the apoenzyme and the free radical-containing form with copper substantially restores both the absorption spectra and the catalytic activity of the active enzyme, indicating that the preparation of the radical species does not significantly damage the protein. The absence of a free radical EPR signal in reconstituted and activated galactose oxidase containing nearly stoichiometric copper suggests the radical is an active site species relating to the free radical-coupled copper site previously proposed for this enzyme. Isotopic labeling experiments demonstrate that the radical derives from a tyrosine residue. The distinctive spectra associated with this radical indicate an environment which is different from that associated with the tyrosyl phenoxyl sites in other free radical enzymes.  相似文献   

17.
1. The mechanism of proteolysis of ornithine transaminase apoenzyme II by group-specific protease and the relation between the confirmations of ornithine transaminase and its susceptibility to group-specific protease were studied to elucidate the mode of action of the protease. 2. Differences in the conformations of ornithine transaminase apoenzyme II, molecular weight 67000, and ornithine transaminase holoenzyme, molecular weight 140000, were shown by studies on difference spectra produced by various concentrations of ethylene glycol. Increase of the titratable sulfhydryl groups on resolution of the coenzyme from ornithine transaminase also supports this finding. These results are consistent with the facts that the apoenzyme was sensitive to group-specific protease, while the holoenzyme was not. 3. Kinetics studies showed that ornithine transaminase apoenzyme II was degraded by limited proteolysis. Reaction of the native enzyme with group-specific protease resulted in a nick in the enzyme molecule with formation of one homogeneous large product and small peptides. The large product was not degraded further. The large product was indistinguishable from native ornithine transaminase apoenzyme II in various properties including its elution volume on gel filtration, its mobility on disc electrophoresis, its antigenicity, its estimated number of exposed tryptophan residues, and its titratable number of sulfhydryl groups. But unlike the apoenzyme the product did not show tetramerization with coenzyme or catalytic activity, although it retained the ability to bind with coenzyme and had the same number of bound pyridoxal phosphate as the native ornithine transaminase molecule. Thus, native ornithine transaminase apoenzyme II was degraded by limited proteolysis. Unfolded enzyme, denatured by 8 M urea, was degraded extensively. 4. The initial step of intracellular proteins degradation is discussed on the basis of these results.  相似文献   

18.
We have investigated reactions of the 5-phosphonoethyl and 5-phosphonoethenyl analogs of pyridoxal 5'-phosphate in the coenzyme site of cytosolic aspartate aminotransferase. Acid dissociation constants and equilibrium constants for hydration and for tautomerization have been evaluated for these compounds. In confirmation of previous results, both compounds are partially active. They bind to apoenzyme well and undergo conversion in the presence of glutamate to amine forms which show induced circular dichroism comparable to that of native enzyme. A normal "external" Schiff base is evidently formed with 2-methylaspartate, but the amounts of quinonoid intermediate formed with erythro-3-hydroxyaspartate are less than those formed with pyridoxal phosphate. The pKa of the imine group of the enzyme reconstituted with the phosphonoethyl analog is more than two units lower than that in the native enzyme. Binding of the dicarboxylates glutarate, 2-oxoglutarate, and succinate shifts the pKa upward. The absorption spectra of the resulting complexes indicate the existence of at least three low pH species. A shift of 2.3 to 2.9 ppm to a lower frequency was observed for the 31P NMR signal upon binding of these dicarboxylates or of 2-methylaspartate. Enzyme containing the analogs crystallizes. Polarized absorption spectra suggest that the coenzyme has an orientation similar to that of pyridoxal phosphate in the native enzyme.  相似文献   

19.
3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (tyrosine sensitive) was purified from Escherichia coli carrying the plasmid pKB45. Enzyme of high specific catalytic activity (70 mu/mg) was obtained from cells grown only to the early log phase. The purified protein contained Cu(II) and showed an absorption band at 350 nm. Metal-free, catalytically inactive apoenzyme could be produced by dialysis against cyanide ion, and the holoenzyme could be reconstituted in terms of both catalytic activity and A350 by the binding of one Cu(II) ion per enzyme subunit. Zn(II) also reactivated the apoenzyme to about 50% of the level seen with Cu(II), although in this case no band appeared at 350 nm. In contrast to earlier reports that the enzyme contains substoichiometric levels of iron, insignificant amounts of iron were found in the isolated enzyme, and neither Fe(II) nor FE(III) regenerated either an absorption band at 350 nm or any catalytic activity from the apoenzyme. The evident preference of the enzyme as isolated for (Cu)II suggests that the synthase might naturally be a copper metalloenzyme.  相似文献   

20.
The tryptophan fluorescence maximum for holoprotocatechuate 3,4-dioxygenase(holo PCD) is blue-shifted slightly (3 nm) from that of the apoenzyme. In the preparation of apoenzyme, increases in tryptophan fluorescence intensity coincided with decreases in enzyme activity and decreases in iron content. The tryptophan emission intensity of reconstituted enzyme having full enzyme activity was about 90% of that of the holoenzyme. Although apo PCD has similar molecular weight, amino acid content and essentially the same gross quaternary conformation as holo PCD, the absence of iron in apo PCD causes the changes in emission intensity of tryptophan. Findings indicate that some tryptophan residues may be (or may be near) the iron-binding ligands in the catalytic site of protocatechuate 3,4-dioxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号