首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
藻胆蛋白是蓝藻中的捕光蛋白,其生物合成的重要一步是藻胆色素与脱辅基蛋白的连接.大多数藻胆色素的正确连接都需要结合位点专一和对色素的构象有选择性的裂合酶来催化完成,但是这方面的报道不是很多.藻红蓝蛋白由两个亚基组成,β亚基(简称β-PEC)含171个氨基酸残基及两个辅基色素藻蓝胆素(简称PCB),分别在Cys-84和Cys-155位以硫醚键共价相连.通过同源性分析获得的由编号为alr0617基因编码的蛋白为藻红蓝蛋白β亚基(β-PEC)中的Cys-84与PCB的连接的催化酶.为了研究层理鞭枝藻藻红蓝蛋白(PEC)β亚基(β-PEC)中藻蓝胆素(PCB)与脱辅基蛋白的连接机制,通过体内重组方式得到色素蛋白PCB-PecB(C155I),分析表明该色素蛋白与β-PEC的吸收光谱和荧光光谱一致.酸性尿素变性实验证明得到的色素蛋白中的藻蓝胆素PCB没有被破坏.使用胃蛋白酶对天然藻红蓝色素蛋白和重组藻红蓝色素蛋白进行相同条件的水解并得到各自的色素肽,高效液相色谱分析表明这两种色素肽相同,由此证明了编号为alr0617基因编码的蛋白质能催化PCB与PecB(C155I)正确共价偶联.  相似文献   

2.
利用在大肠杆菌中表达的藻红蓝蛋白α-亚基脱辅基蛋白与藻蓝胆素PCB重组,吸收光谱、荧光光谱和高效可逆光化学性质分析表明,藻红蓝蛋白α-亚基脱辅基蛋白与藻蓝胆素直接重组,生成的胆素蛋白中辅基色素仍为藻蓝胆素;而藻红蓝蛋白α-亚基脱辅基蛋白与藻蓝胆素在藻红蓝蛋白α-亚基重组酶(pecE和pecF基因的表达产物)催化下重组,生成的胆素蛋白中辅基色素转变为藻紫胆素,并具有高效可逆光化学特性。  相似文献   

3.
4.
层理鞭枝藻(Mastigocladus laminosus PCC7603)藻蓝蛋白β-CPC和藻红蓝蛋白β-PEC中均存在2个藻胆色素结合位点(Cys-84和Cys-155),可与藻蓝胆素(简称PCB)发生共价偶联反应,已有研究证实编码基因为alr0617的裂合酶CpcS1是催化Cys-84与PCB共价偶联的裂合酶。在研究Cys-155与PCB共价偶联的过程中,通过BLAST软件同源性对比分析后,筛选出4个基因:cpcT1、cpcT2、cpcS1、cpcS2,其中基因cpcT1和cpcS2,利用分子克隆的技术,根据实验需要转到载体pCDFDuet上,通过DNA电泳和蛋白质电泳挑选出正确的克隆。此4个基因对应的质粒与在大肠杆菌内生成PCB必需的质粒pACYCDuet-ho1-pcyA,以及质粒pET-cpcB(C84S)或pET-pecB(C84A),共同转入大肠杆菌BL21(DE3)内,进行体内重组,得到各重组蛋白,经过亲和层析柱提纯并透析,过滤掉金属离子,纯化透析后的蛋白经过活性比较、蛋白质电泳以及锌染色、蛋白质变性等试验以及荧光和紫外吸收光谱等鉴定,通过与相应文献中PCB光谱的比对,确定编码基因为all5339的裂合酶CpcT1能高效地催化Cys-155与PCB共价偶联,而其余3个基因不能起到催化作用。由此,能催化脱辅基蛋白β-CPC和β-PEC的两个位点共价偶联PCB的裂合酶均被发现。实验对于研究藻胆蛋白的生物合成、光合作用捕光机理以及藻胆体的组装等有重要的意义。    相似文献   

5.
层理鞭枝藻藻红蓝蛋白操纵子F基因的克隆和表达   总被引:5,自引:3,他引:2  
  相似文献   

6.
层理鞭枝藻藻蓝蛋白E和F基因的克隆及序列分析   总被引:3,自引:0,他引:3  
克隆并测定了层理鞭枝藻藻蓝蛋白E和F基因全序列,通过将其氨基酸序列与其他蓝藻的相应序列进行比较,表明层理鞭枝藻中cpcE,cpcF所编码的蛋白质是层理鞭枝藻中α-CPC生命合成的连接酶。  相似文献   

7.
藻胆蛋白(phycobiliprotein)是蓝藻和红藻藻胆体的组成部分,是光合作用集光复合体的组成部分,一般由α和β亚基构成,每个亚基含1~4个辅基色素,从而使藻胆蛋白具有特定的光谱吸收性质。根据这些吸收光谱性质,可以将藻胆蛋白分为:别藻蓝蛋白(APC)、藻蓝蛋白(PC)和藻红蛋白(PE)等,在某些缺乏PE而有异形胞的蓝藻中存在充当PE天线捕光功能的藻红蓝蛋白(PEC)〔1〕。藻胆蛋白可用于天然食用色素、化妆品色素和制药行业,还可作为免疫检测、荧光显微技术和流式细胞荧光测定法技术方面的荧光探针。特别是本工作研究的层理鞭枝藻(简称M.laminosu…  相似文献   

8.
为了研究鱼腥藻PCC7120(Anabaena sp.PCC7120)中别藻蓝蛋白(APC)α和β亚基(α-APC和β-APC)中藻蓝胆素(PCB)与脱辅基蛋白的生物合成,并在蓝藻体外对这两种色素蛋白PCB—ApcA和PCB-ApcB合成时聚集过程进行分析,通过多种组合的质粒在大肠杆菌体内共同表达进行重组。色素蛋白的吸收和荧光光谱以及Zn电泳表明,在大肠杆菌体内同时得到色素蛋白PCB—ApcA和PCB—ApcB,并且体内重组色素蛋白的细胞荧光光谱显示,色素蛋白以三聚体的形式存在,而破碎细胞后所得上清液所显示的光谱特征为单聚体的特征。  相似文献   

9.
为了研究藻蓝蛋白α亚基的生物合成途径,通过构建相容的3种重组质粒pETDuet-cpcA、pCOLADuet-cpcE-cpcF和pACYCDuet-ho1-pcyA,将裂合酶基因cpcEcpcF、血红素氧化酶基因ho1、藻蓝胆素合成酶基因pcyA和脱辅基藻蓝蛋白α亚基基因cpcA共同转入大肠杆菌BL21(DE3)。通过色素蛋白锌电泳和光谱检测表明产生了生物活性的CpcA-PCB。成功实现了大肠杆菌内藻蓝蛋白α亚基84位半胱氨酸残基与PCB的连接。而在裂合酶基因cpcEcpcF不转入大肠杆菌的情况下,大肠杆菌内只有0.2%的CpcA-PCB产生。以上研究为进一步在大肠杆菌内合成天然的藻蓝蛋白奠定了基础。  相似文献   

10.
为了研究藻蓝蛋白α亚基的生物合成途径,通过构建相容的3种重组质粒pETDuet-cpcA、pCOLADuet-cpcE-cpcF和pACYCDuet-ho1-pcyA,将裂合酶基因cpcE和cpcF、血红素氧化酶基因ho1、藻蓝胆素合成酶基因pcyA和脱辅基藻蓝蛋白α亚基基因cpcA共同转入大肠杆菌BL21(DE3)。通过色素蛋白锌电泳和光谱检测表明产生了生物活性的CpcA-PCB。成功实现了大肠杆菌内藻蓝蛋白α亚基84位半胱氨酸残基与PCB的连接。而在裂合酶基因cpcE和cpcF不转入大肠杆菌的情况下,大肠杆菌内只有0.2%的CpcA-PCB产生。以上研究为进一步在大肠杆菌内合成天然的藻蓝蛋白奠定了基础。  相似文献   

11.
Storf M  Parbel A  Meyer M  Strohmann B  Scheer H  Deng MG  Zheng M  Zhou M  Zhao KH 《Biochemistry》2001,40(41):12444-12456
PecE and PecF, the products of two phycoerythrocyanin lyase genes (pecE and pecF) of Mastigocladus laminosus (Fischerella), catalyze two reactions: (1) the regiospecific addition of phycocyanobilin (PCB) to Cys-alpha 84 of the phycoerythrocyanin alpha-subunit (PecA), and (2) the Delta 4-->Delta 2 isomerization of the PCB to the phycoviolobilin (PVB)-chromophore [Zhao et al. (2000) FEBS Lett. 469, 9-13]. The alpha-apoprotein (PecA) as well PecE and PecF were overexpressed from two strains of M. laminosus, with and without His-tags. The products of the spontaneous addition of PCB to PecA, and that of the reaction catalyzed by PecE/F, were characterized by their photochemistry and by absorption, fluorescence, circular dichroism of the four states obtained by irradiation with light (15-Z/E isomers of the chromophore) and/or modification of Cys-alpha 98/99 with thiol-directed reagents. The spontaneous addition leads to a 3(1)-Cys-PCB adduct, which is characteristic of allophycocyanins and phycocyanins, while the addition catalyzed by PecE and PecF leads to a 3(1)-Cys-PVB adduct which after purification was identical to alpha-PEC. The specificity and kinetics of the chromophore additions were investigated with respect to the structure of the bilin substrate: The 3-ethylidene-bilins, viz., PCB, its 18-vinyl analogue phytochromobilin, phycoerythrobilin and its dimethylester, react spontaneously to yield the conventional addition products (3-H, 3(1)-Cys), while the 3-vinyl-substituted bilins, viz., bilirubin and biliverdin, were inactive. Only phycocyanobilin and phytochromobilin are substrates to the addition-isomerization reaction catalyzed by PecE/F. The slow spontaneous addition of phycoerythrobilin is not influenced, and there is in particular no catalyzed isomerization to urobilin.  相似文献   

12.
Cofactor requirements and enzyme kinetics have been studied of the novel, dual-action enzyme, the isomerizing phycoviolobilin phycoerythrocyanin-alpha84-cystein-lyase(PVB-PEC-lyase) from Mastigocladus laminosus, which catalyses both the covalent attachment of phycocyanobilin to PecA, the apo-alpha-subunit of phycoerythrocyanin, and its isomerization to phycoviolobilin. Thiols and the divalent metals, Mg2+ or Mn2+, were required, and the reaction was aided by the detergent, Triton X-100. Phosphate buffer inhibits precipitation of the proteins present in the reconstitution mixture, but at the same time binds the required metal. Kinetic constants were obtained for both substrates, the chromophore (Km = 12-16 micro m, depending on [PecA], kcat approximately 1.2 x 10-4.s-1) and the apoprotein (Km = 2.4 micro m at 14 micro m PCB, kcat = 0.8 x 10-4.s-1). The kinetic analysis indicated that the reconstitution reaction proceeds by a sequential mechanism. By a combination of untagged and His-tagged subunits, evidence was obtained for a complex formation between PecE and PecF (subunits of PVB-PEC-lyase), and by experiments with single subunits for the prevalent function of PecE in binding and PecF in isomerizing the chromophore.  相似文献   

13.
Zhao KH  Wu D  Zhou M  Zhang L  Böhm S  Bubenzer C  Scheer H 《Biochemistry》2005,44(22):8126-8137
PecE and PecF jointly catalyze the covalent attachment of phycocyanobilin to Cys-alpha84 of PecA and its concomitant isomerization to phycoviolobilin. (a) An Eschertchia coli supernatant expressing pecF has a residual activity of 6%; compared to the holoenzyme, this activity is lost upon purification. (b) Functional domains of both subunits from the cyanobacterium Mastigocladus laminosus were evaluated by mutageneses and chemical modification of amino acids. When in PecE the two motifs Y29YAAWWL and D263DLL were deleted, the holoenzyme lost its activity; it is also inactivated upon deletion of a central part (R111 to A122). The three conserved cysteines C48, C91, and C161 have only minor effects on catalysis. When in PecF the 20 C-terminal and 56 N-terminal amino acids were truncated, the lyase-isomerase activity in combination with PecE decreased to 12% and 15%, respectively, compared to the native enzyme. The catalytic efficiency (k(cat)/K(m)) decreased 16-fold when the unique four histidine residues in PecF beginning at H53 were deleted. H121 and C122 of PecF are essential for the enzyme activity; they are part of a unique stretch extending from A104 to N125 which is absent in the beta-subunit of related but nonisomerizing lyases. A single histidine and a single tryptophan are required for activity in both PecE and PecF, as judged from diethyl pyrocarbonate and N-bromosuccinimide modification and statistical analyses. Inactivation of PecE and PecF is also possible by arginine-specific reagents, while modifications of lysine, glutamate, and aspartate retained activity. (c) PecE and PecF, as well as most of the mutants, bind PCB covalently in substoichiometric amounts, as assayed by Zn(2+)-induced fluorescence on denaturing gels.  相似文献   

14.
Zhao KH  Wu D  Zhang L  Zhou M  Böhm S  Bubenzer C  Scheer H 《The FEBS journal》2006,273(6):1262-1274
Covalent attachment of phycocyanobilin (PCB) to the alpha-subunit of C-phycocyanin, CpcA, is catalysed by the heterodimeric PCB : CpcA lyase, CpcE/F [Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA & Glazer AN (1992) Proc Natl Acad Sci USA89, 7017-7021]. CpcE and CpcF of the cyanobacterium, Mastigocladus laminosus PCC 7603, form a 1 : 1 complex. Lyase-mutants were constructed to probe functional domains. When in CpcE (276 residues) the N terminus was truncated beyond the R33YYAAWWL motif, or the C terminus beyond amino acid 237, the enzyme became inactive. Activity decreases to 20% when C-terminal truncations went beyond L275, which is a key residue: the K(m) of CpcE(L275D) and (L276D) increased by 61% and 700%, k(cat)/K(m) decreased 3- and 83-fold, respectively. The enzyme also lost activity when in CpcF (213 residues) the 20 N-terminal amino acids were truncated; truncation of 53 C-terminal amino acids inhibited complex formation with CpcE, possibly due to misfolding. According to chemical modifications, one accessible arginine and one accessible tryptophan are essential for CpcE activity, and one carboxylate for CpcF. Both subunits bind PCB, as assayed by Ni2+ affinity chromatography, SDS/PAGE and Zn2+-induced fluorescence. The bound PCB could be transferred to CpcA to yield alpha-CPC. The PCB transfer capacity correlates with the activity of the lyase, indicating that PCB bound to CpcE/F is an intermediate of the enzymatic reaction. A catalytic mechanism is proposed, in which a CpcE/F complex binds PCB and adjusts via a salt bridge the conformation of PCB, which is then transferred to CpcA.  相似文献   

15.
Many cyanobacteria use brilliantly pigmented, multisubunit macromolecular structures known as phycobilisomes as antenna to enhance light harvesting for photosynthesis. Recent studies have defined the enzymes that synthesize phycobilin chromophores as well as many of the phycobilin lyase enzymes that attach these chromophores to their cognate apoproteins. The ability of the phycocyanin α-subunit (CpcA) to bind alternative linear tetrapyrrole chromophores was examined through the use of a heterologous expression system in Escherichia coli. E. coli strains produced phycocyanobilin, phytochromobilin, or phycoerythrobilin when they expressed 3Z-phycocyanobilin:ferredoxin oxidoreductase (PcyA), 3Z-phytochromobilin:ferredoxin oxidoreductase (HY2) from Arabidopsis thaliana, or phycoerythrobilin synthase (PebS) from the myovirus P-SSM4, respectively. CpcA from Synechocystis sp. PCC 6803 or Synechococcus sp. PCC 7002 was coexpressed in these strains with the phycocyanin α-subunit phycocyanobilin lyase, CpcE/CpcF, or the phycoerythrocyanin α-subunit phycocyanobilin isomerizing lyase, PecE/PecF, from Noctoc sp. PCC 7120. Both lyases were capable of attaching three different linear tetrapyrrole chromophores to CpcA; thus, up to six different CpcA variants, each with a unique chromophore, could be produced with this system. One of these chromophores, denoted phytoviolobilin, has not yet been observed naturally. The recombinant proteins had unexpected and potentially useful properties, which included very high fluorescence quantum yields and photochemical activity. Chimeric lyases PecE/CpcF and CpcE/PecF were used to show that the isomerizing activity that converts phycocyanobilin to phycoviolobilin resides with PecF and not PecE. Finally, spectroscopic properties of recombinant phycocyanin R-PCIII, in which the CpcA subunits carry a phycoerythrobilin chromophore, are described.  相似文献   

16.
M Eberlein  W Kufer 《Gene》1990,94(1):133-136
Phycocyanin (PC) and phycoerythrocyanin (PEC) are light-harvesting components of the phycobilisome (PbS) from the cyanobacterium Mastigocladus laminosus. These two biliproteins are closely related, and show a particularly high degree of sequence homology in the C-terminal part of their beta-subunits. A 198-bp gene fragment encoding this region of PC from M. laminosus was therefore used as a heterologous hybridization probe to identify the genes coding for PEC from the same organism. A 1.7-kb HindIII fragment was cloned and its sequence determined. Three open reading frames (ORFs) were found on this fragment. The gene coding for the beta-subunit of PEC (pecB) was followed downstream by the alpha-subunit encoding gene (pecA). This gene arrangement had also been found in the PC-encoding (cpc) gene pair from M. laminosus, and is conserved in cpc genes from other organisms. This finding is compatible with a model of evolution of the cpc and pec gene pairs as the product of gene duplication of an ancestral beta- and alpha-subunit-encoding pair. A third ORF starts downstream from pecA. It codes for the 34.5-kDa linker protein, which forms complexes with PEC with a 1:6 stoichiometry in the PbS. Biliprotein- and linker protein-encoding genes are frequently clustered, and this provides mechanisms for the production of the different stoichiometric amounts of these gene products required in the PbS and for coregulation by environmental factors.  相似文献   

17.
Biliproteins are post-translationally modified by chromophore addition. In phycoerythrocyanin, the heterodimeric lyase PecE/F covalently attaches phycocyanobilin (PCB) to cysteine-alpha84 of the apoprotein PecA, with concomitant isomerization to phycoviolobilin. We found that: (a) PecA adds autocatalytically PCB, yielding a low absorbance, low fluorescence PCB.PecA adduct, termed P645 according to its absorption maximum; (b) In the presence of PecE, a high absorbance, high fluorescence PCB.PecA adduct is formed, termed P641; (c) PecE is capable of transforming P645 to P641; (d) When in stop-flow experiments, PecA and PecE were preincubated before chromophore addition, a red-shifted intermediate (P650, tau=32 ms) was observed followed by a second, which was blue-shifted (P605, tau=0.5 s), and finally a third (P638, tau=14 s) that yielded the adduct (P641, tau=20 min); (e) The reaction was slower, and P605 was missing, if PecA and PecE were not preincubated; (f) Gel filtration gave no evidence of a stable complex between PecA and PecE; however, complex formation is induced by adding PCB; and (g) A red-shifted intermediate was also formed, but more slowly, with phycoerythrobilin, and denaturation showed that this is not yet covalently bound. We conclude, therefore, that PecA and PecE form a weak complex that is stabilized by PCB, that the first reaction step involves a conformational change and/or protonation of PCB, and that PecE has a chaperone-like function on the chromoprotein.  相似文献   

18.
The amino-acid sequences of both subunits of C-phycoerythrin from the cyanobacterium Fremyella diplosiphon have been determined. The alpha-subunit contains 164 amino acid residues, two phycoerythrobilin (PEB) chromophores and has a molecular mass of 18,368 Da (protein: 17,192 Da + 2 PEB, one PEB accounting for 588 Da). The beta-subunit consists of 184 residues, three PEB chromophores and has a molecular mass of 20,931 Da (protein: 19,168 Da and 3 PEB: 1,764 Da). The five PEB chromophores (open chain tetrapyrroles) are covalently bound to six cysteine residues (one of them doubly bound to two cysteine residues). On the alpha-subunit, the first chromophore was found at position 84, homologous to the chromophore binding site of the other biliproteins APC, PC and PEC. The second chromophore, unique for the alpha-subunit of PE, is inserted together with a pentapeptide at position 143 a. On the beta-subunit, a doubly bound chromophore is attached to cysteine residues 50 and 61, similar to the rhodophytan phycoerythrins (B-PE and R-PE). The second and third chromophores were found at positions 84 and 155, homologous to the other biliproteins. A unique peptide insertion of 14 amino acid residues (without chromophore) was found at position 141 a-o in the beta-subunit and probably is located in the three-dimensional model near the additional chromophores of the C-PE alpha- and beta-subunits. Both additional chromophores of the C-PE alpha- and beta-subunit may be located at the periphery of the C-PE-trimer. The amino-acid sequence homology between C-PE alpha- and beta-subunit is 26% and to the alpha- and beta-subunits of C-PC from Mastigocladus laminosus 49% and 48%, respectively.  相似文献   

19.
Phycobilisomes from the cyanobacterium Mastigocladus laminosus cultured in white and red light were isolated and compared with respect to the phycoerythrocyanin (PEC) and linker polypeptide contents. It was verified that the production of PEC is induced by low light intensities. A PEC complex, (alpha PEC beta PEC)6LR34.5,PEC, and a phycocyanin (PC) complex, (alpha PC beta PC)6LR34.5,PC, were isolated from phycobilisomes by Cellex-D anion exchange chromatography and sucrose density gradient centrifugation. The absorption and fluorescence emission maxima of the PEC complex are at 575 and 620 nm and those of the PC complex are at 631 and 647 nm, respectively. The extinction coefficients of the two complexes were determined. From different experiments it was concluded that PEC is present as a hexameric complex, (alpha PEC beta PEC)6LR34.5,PEC, in the phycobilisome. The two linker polypeptides LR34.5,PEC and LR34.5,PC were isolated from their phycobiliprotein complexes by gel filtration on Bio-Gel P-100 in 50% formic acid. A 5-kDa terminal segment of both linker polypeptides was found to influence the hexamer formation of the phycobiliproteins. The same segments have been described to be responsible for the hexamer-hexamer linkage (Yu, M.-H. & Glazer, A.N. (1982) J. Biol. Chem. 257, 3429-3433). A 8.9-kDa linker polypeptide, LR(C)8.9, was isolated from a PEC fraction of the Cellex-D column by Bio-Gel P-100 gel filtration in 50% formic acid. Localisation of this protein within the phycobilisome was attempted. Its most probable function is to terminate the phycobilisomal rods at the end distal to the allophycocyanin core.  相似文献   

20.
The light-harvesting pigment-protein complexes allophycocyanin (AP), C-phycocyanin (PC) and phycoerythrocyanin (PEC) of the cyanobacterium Mastigocladus laminosus consist of alpha- and beta-subunits containing about 170 amino-acid residues each. These two subunits form an alpha,beta-monomer, three of which build up a disc-shaped trimer. In this study these phycobiliproteins were crosslinked with bis-imidates. Various spacer lengths of the reagent and various aggregation states of the phycobiliprotein were tested. An intersubunit crosslink could be verified in all three phycobiliproteins. PC-trimers were crosslinked with the homobifunctional reagent dimethyl pimelimidate having a maximal crosslinking distance of 10 A. Two crosslinks could be identified: an intramonomer intersubunit crosslink with a yield of 48% and an intrasubunit crosslink within alpha PC (57%). These products were chemically and enzymatically fragmented and the small crosslinked peptides were isolated and then identified by amino-acid analysis. The following amino acids were crosslinked: alpha-Val 1 with beta-Ala 1 and alpha-Lys 62 with alpha-Lys 134. Both crosslinks could be localized within the known three-dimensional structure of PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号