首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
李玉英 《生态学报》2011,31(6):1617-1630
为河西走廊绿洲灌区豆科/禾本科间作体系的养分管理提供科学依据,于2007年在武威绿洲农业试验站应用田间原位根系行分隔技术研究了蚕豆/玉米种间互作和施氮对玉米抽雄期的根系空间分布、根系形态和作物地上部生长的影响。研究结果表明:种间互作和施氮均增加了玉米和蚕豆在纵向和横向两个尺度上的根重密度、根长密度、根表面积、根系体积。根长密度和根表面积与两种作物产量和氮素吸收均呈正相关,而与蚕豆的根瘤重呈负相关;抽雄期的土壤含水量与玉米产量和养分吸收呈显著的负相关。玉米根系可以占据蚕豆地下部空间,但蚕豆的根却较少到间作玉米的地下部空间,也就是间作后增加了玉米根系水平尺度的生态位。蚕豆和玉米根系主要分布分别在0-40 cm浅土层和0-60 cm 土层,且间作玉米根系在60-120 cm比单作和分隔的多。因此,种间互作和施氮扩大了两作物根系纵向和横向的空间生态位,改变了作物根系形态,即扩展了两者水分和养分吸收的生态位,增加了作物吸收养分的有效空间,从而提高了间作生态系统的生产力。  相似文献   

2.
玉米/大豆间作条件下的作物根系生长及水分吸收   总被引:11,自引:0,他引:11  
通过田间试验研究了玉米/大豆条带间作群体的根系分布及土壤水分吸收规律.结果表明:水分充足条件下,土壤剖面内玉米和大豆根系的分布模式近似于三角形;玉米根系水平分布范围较大,侧向伸展长度约为58 cm,16~22 cm土层的玉米根系侧向伸展最远,玉米根系不仅分布于间作条带行间,而且生长到大豆条带的行间;大豆根系水平分布于相对有限的区域内,侧向伸展长度约为26 cm.作物根质量密度随着距作物行(玉米或大豆)距离的增加而减少,玉米行和边行大豆根质量密度的90%分布于0~30 cm土层.距玉米行10 cm处玉米的根质量密度高于大豆,距玉米行20 cm处大豆的根质量密度大于玉米,两种作物根质量密度的85%都分布于0~30 cm土层内.间作条带内水分变化主要集中在0~30 cm土层,水分变化量依次为:玉米区域>大豆区域>条带行间.表明在水分充足条件下,间作作物优先在自己的区域吸水,根系混合区吸水滞后发生.  相似文献   

3.
刺槐和侧柏人工林有效根系密度分布规律研究   总被引:1,自引:0,他引:1  
通过分层分段挖掘法,对13龄刺槐、侧柏人工林,根区有效根长密度和根重密度的空间分布进行了研究。结果表明,尽管刺槐根系分布深度是侧柏的2倍多,但平均有效根长密度只有侧柏的44.5%。在垂直方向上,两树种有效根系主要分布在0~60cm土层内,然而最大有效根长密度却均位于距地表0~30cm以内。其中,刺槐0~30cm区域内有效根长占总有效根长的51.58%,侧柏占58.38%;刺槐有效根干重占总有效根干重的63.01%,侧柏占71.09%;两树种根系密度分布均随土层深度增加而呈指数形式递减。在水平方向上,刺槐有效根系密度呈二次抛物线型分布、最大有效根长或根密度以距树干30~90cm处最大;侧柏有效根系密度则随着距主干距离的增大而减小。非线性参数拟合分析表明,采用RD=EXP(A BX CZ)函数模型,能较好地反映人工林根系密度的空间分布。  相似文献   

4.
刺槐和侧柏人工林有效根系密度分布规律研究   总被引:31,自引:2,他引:29  
通过分层分段挖掘法 ,对 13龄刺槐、侧柏人工林 ,根区有效根长密度和根重密度的空间分布进行了研究 .结果表明 ,尽管刺槐根系分布深度是侧柏的 2倍多 ,但平均有效根长密度只有侧柏的 4 4 .5 % .在垂直方向上 ,两树种有效根系主要分布在 0~ 6 0 cm土层内 ,然而最大有效根长密度却均位于距地表 0~ 30 cm以内 .其中 ,刺槐 0~30 cm区域内有效根长占总有效根长的 5 1.5 8% ,侧柏占 5 8.38% ;刺槐有效根干重占总有效根干重的 6 3.0 1% ,侧柏占 71.0 9% ;两树种根系密度分布均随土层深度增加而呈指数形式递减 .在水平方向上 ,刺槐有效根系密度呈二次抛物线型分布、最大有效根长或根密度以距树干 30~ 90 cm处最大 ;侧柏有效根系密度则随着距主干距离的增大而减小 .非线性参数拟合分析表明 ,采用 RD=EXP A+BX +CZ 函数模型 ,能较好地反映人工林根系密度的空间分布  相似文献   

5.
间套种植复合群体根系时空分布特征   总被引:21,自引:3,他引:18  
选择小麦/大豆和玉米/甘蓝2种典型间套种植模式,探讨了复合群体根系营养竞争与补偿的生态学机制.结果表明,小麦/大豆复合群体根系生长在年生长期内显示出双峰交错性,小麦总根重峰值出现在6月初,而大豆峰值出现在8月上、中旬.根重与根长密度的生长还表现出异步性,根重峰值的出现早于根长.复合群体各配对作物根系的垂直分布呈层次递减性,玉米拔节前根重的85%以上都分布于0~20cm土层,且垂直生长呈多波顾次递推特点.间套作物根系的分布呈明显的“偏态”不均衡分布,套作玉米根系偏甘蓝行20.4~40.7cm,而甘蓝根系偏玉米行仅8.5~12.6cm.施肥使套作玉米与甘蓝根系的交叉幅宽由40.2cm下降到20.1cm,2种作物根系的交叉点位置由20.5cm上升到12.4cm.  相似文献   

6.
研究结果表明,与冬小麦-夏玉米平作和春玉米单作相比,冬小麦-春玉米-夏玉米复合种植模式各作物生残生长时期均处于高空间生态位,田间光、温、气等生态条件得以改善,改平面受光为立体受光,作物群体内相对光强明显提高,而且各作物行间地温升高种植带内风速加大,均有利于提高籽粒灌浆的强度和速度。同时,在籽粒灌浆过程中,各作物功能叶片内叶绿素含量和光合速率均比冬小麦夏玉米一年两熟平作或玉米单作有所提高,这是冬小麦-春玉米复合种植模式主要增产原因之一。  相似文献   

7.
应用重积分研究了土壤层中散根型和直根型玉米根系的分布空间,同时研究了玉米根系的空间密度分布.  相似文献   

8.
小麦和玉米根系取样位置优化确定及根系分布模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
为了确定小麦(Triticum aestivum)、玉米(Zea mays)根系的最优取样位置和更准确地模拟根长密度在土壤剖面的分布, 在冬小麦和夏玉米的灌浆后期, 采用根钻法取样, 比较了不同取样位置对根系分布的影响; 采用Gerwitz和Page模型对根长密度的分布进行了模拟。结果表明, 冬小麦行间和行上取样在0-10 cm土层根长密度差异显著, 在10 cm以下土层差异减少。在确定根长密度分布的取样中, 在0-20 cm土层应考虑根长密度分布的空间差异, 即行上密度大于行间密度; 而在20-100 cm土层, 需要考虑行间根长密度大于行上的空间差异; 在1 m以下土层两个位置的差异逐渐消失, 可不考虑空间差异。夏玉米根长密度在上层土壤表现出距离植株不同位置差异显著的特征。植株位置(株上)、距植株10 cm和距植株20 cm位置根长密度在土壤中的分布特征是: 0-10 cm土层3个位置根长密度差异在50%以上, 根长密度大小是株上>距植株10 cm>距植株20 cm; 而在10-30 cm层次, 根长密度表现为距植株10 cm>株上>距植株20 cm, 30-50 cm土层株上位置的根长密度最小, 50 cm以下各位置根长密度差异不明显。对于玉米根系取样, 50 cm以上土层需要考虑根长密度的空间差异, 50 cm以下土层可不考虑。采用Gerwitz和Page模型, 结合华北平原机械化耕作下形成的土壤犁底层变厚及其犁底层容重增加对根系分布的影响, 在模型中加入土壤容重参数订正可以使模型更准确地模拟根长密度在土壤剖面的分布。  相似文献   

9.
小麦/大豆间作中作物种间的竞争作用和促进作用   总被引:34,自引:3,他引:31  
春小麦/春大豆间作是西北一熟制灌区广泛采用的高产种植形式.本文采用田间小区和微区根系分隔试验研究了这种种植形式作物种间的竞争作用和促进作用.结果表明,小麦/大豆间作具有明显的间作优势.土地当量比为1.23~1.26.小麦为优势种,竞争力强于大豆,具有明显的间作边行优势.小麦边行优势的1/3贡献来自于地下部.小麦收获后,大豆生长具有恢复作用,认为这种恢复作用是间作优势的机制之一.间作相对于单作两种作物的收获指数均有显著提高.收获指数的种间促进作用是间作优势的另一机制.  相似文献   

10.
张瑞  李鹏展  王力 《生态学杂志》2019,30(2):359-369
土壤水分研究是统筹农业生产和生态环境建设的关键环节.本研究结合4年田间定位试验,通过对黄土高原南部长武旱塬冬小麦和春玉米2012—2015年土壤水分状况的研究,分析农田土壤干层形成情况、土壤水分对作物生长的影响、降水对土壤水库的影响以及作物对土壤水分状况的影响.结果表明: 降水年型是冬小麦地土壤干层形成的主导因素,年内降水分布不均是春玉米地土壤干层形成的主导因素.长武旱塬区冬小麦和春玉米一年一季的种植制度不会导致永久性干层的产生;相较于春玉米,冬小麦根系生长习性更符合黄土旱塬区土壤水分循环特征,黄土旱塬区土壤水分有效性可保证作物产量稳定;降水作用下,冬小麦土壤水库充、放水过程呈现收获期、休闲期和苗期连续充水、缓慢消耗期和大量消耗期连续失水相互交替的特点.0~300和300~600 cm土层土壤水库不一致性现象明显,以最大根深作为野外监测试验中土壤含水量的取样深度时,由于深层土壤水库负反馈作用,不同降水年型下,休闲期和苗期的蒸散均会被高估,缓慢消耗期和大量消耗期的蒸散均会被低估.冬小麦田间过渡层存在的范围为140~360 cm;作物生长的时间跨度影响土壤水库效应的发挥,土壤水库对冬小麦供水表现为年际间的调节作用,土壤水库对春玉米供水表现为季节间的调节作用.  相似文献   

11.
为了明确华北严重缺水区晚播冬小麦灌水对根系时空分布和土壤水分利用规律的影响,以冬小麦石麦15为材料,利用田间定位试验研究了不同灌水处理(春季不灌水W0;春季灌拔节水75mm,W1;春季灌起身水、孕穗水和灌浆水共225mm,W3)对根系干重密度(DRWD)、根长密度(RLD)、体积密度、分枝数等在0—200cm土层的垂直分布、动态变化及其对耗水和产量的影响,结果表明:随着春季灌水量的减少,开花后0—80cm土层的根干重密度、根长度密度、体积密度和分枝数密度均显著减少,80cm—200m土层的根干重密度、根长度密度、体积密度和分枝数密度却显著增加,并且显著增加冬小麦在灌浆期间对100cm以下深层土层水分的利用,总耗水量W1和W0分别比W3减少70.9mm、115.1mm,土壤耗水量分别比W3增加79.1mm、108.9mm,子粒产量W1和W0分别比W3减少653.3kg/hm2、1470kg/hm2,水分利用效率(WUE)则分别比W3提高0.09kg/m3、0.06kg/m3。晚播冬小麦春季灌1水(拔节水)可以促进根系深扎,增加深土层的根系分布量,提高对深层土壤贮水的吸收利用量,有利于实现节水与高产的统一。  相似文献   

12.
近50年山东省农业气候资源变化特征   总被引:9,自引:0,他引:9  
利用山东省90个气象站1961-2010年逐日气象观测数据,比较分析了该区域冬小麦和夏玉米生长季光、热、水等农业气候资源的时空变化特征.结果表明: 研究期间,山东省冬小麦和夏玉米生长季各项气温指标均呈显著升高趋势,冬小麦生长季升高趋势更明显;日照时数显著减少;降水量和干燥度无显著变化;夏玉米生长季蒸散量显著减少.冬小麦和夏玉米生长季各农业气候资源呈大致的经向或纬向递增或递减的空间分布.不同区域各农业气候资源历年变化特征差异明显,鲁西地区各气温指标升高趋势较弱,鲁中和鲁西南地区日照时数减少趋势最显著,鲁西地区蒸散量和干燥度减少趋势最显著,鲁中和鲁东南地区冬小麦生长季降水量增加趋势较明显,鲁中和鲁南地区夏玉米生长季降水量增加趋势较明显.山东省热量资源的增加有利于冬小麦生长季各阶段的发育,但植物病虫害的防治难度及农作物遭受高温热害的风险加大,日照时数减少不利于农作物生长期的光合作用,蒸散量减少则有利于土壤水分的保存.
  相似文献   

13.
We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year - Con.W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M), three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize - W/M-M and W/S-M), and single spring maize per year (M). Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha−1 for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region.  相似文献   

14.
In order to evaluate the suitability ofAzospirillum spp. as a crop inoculant in temperate regions, the natural occurrence, distribution and survival ofAzospirillum after seed inoculation in Belgian agricultural soils was studied.Azospirillum was present in most of the fields examined, but concentrations never exceeded 1000 cfu per g soil or per g roots. Under field conditions none of the known species was found to be localized inside the roots of barley, wheat, rye, maize or grasses. Also, the distribution ofA. brasilense SpBr 14 within the root system of hydroponic-grown wheat was studied by immunofluorescence. From the rhizosphere samples of the field crops investigated, a number of microaërophilic, diazotrophic bacteria were isolated and identified asA. lipoferum, found only on maize and grass roots, andA. brasilense, present under all crops. In contrast toA. brasilense, A. lipoferum was able to use different amino-acids and some derivatives as sole carbon and nitrogen sources. Use of a peat-based seed inoculant resulted in the establishment of theAzospirillum spp. in the rhizosphere of field-grown winter barley and winter wheat. The established population survived during winter without appreciable change in numbers, but there was no indication of active growth during spring or summer.  相似文献   

15.
Several morphological, anatomical and physiological changesand their relationship with differential root vs. shoot growthinhibition at low temperature (5°C) were studied in springand winter wheat cultivars. Root:shoot ratios, expressed eitheras a function of root and shoot fresh weight or as a functionof root and leaf areas, increased at low temperature and thisincrement was more pronounced in spring cultivars than in winterones. Although winter cultivars developed relatively smallerroot systems at 5°C, this characteristic was counterbalancedby a lower stomatal frequency and increased thickness of epidermalcell walls in leaves unfolded at this temperature, relativeto spring cultivars. Likewise, at 5°C a decrease in theosmotic potential of shoots and roots was observed in parallelwith sugar accumulation; this decrease was more marked in wintercultivars. These results indicate a differential morpho-anatomicaland physiological plasticity of winter and spring cultivarsduring development at low temperature. The possible associationbetween these changes and plant water economy at low temperaturesis discussed. Copyright 2001 Annals of Botany Company Spring wheat, winter wheat, Triticum aestivum, low temperature, root:shoot ratio, root surface area, stomatal frequency, osmotic potential  相似文献   

16.
Root distribution and interactions between intercropped species   总被引:28,自引:0,他引:28  
Li L  Sun J  Zhang F  Guo T  Bao X  Smith FA  Smith SE 《Oecologia》2006,147(2):280-290
Even though ecologists and agronomists have considered the spatial root distribution of plants to be important for interspecific interactions in natural and agricultural ecosystems, few experimental studies have quantified patterns of root distribution dynamics and their impacts on interspecific interactions. A field experiment was conducted to investigate the relationship between root distribution and interspecific interactions between intercropped plants. Roots were sampled twice by auger and twice by the monolith method in wheat (Triticum aestivum L.)/maize (Zea mays L.) and faba bean (Vicia faba L.)/maize intercropping and in sole wheat, maize, and faba bean up to 100 cm depth in the soil profile. The results showed that the roots of intercropped wheat spread under maize plants, and had much greater root length density (RLD) at all soil depths than sole wheat. The roots of maize intercropped with wheat were limited laterally, but had a greater RLD than sole-cropped maize. The RLD of maize intercropped with faba bean at different soil depths was influenced by intercropping to a smaller extent compared to maize intercropped with wheat. Faba bean had a relatively shallow root distribution, and the roots of intercropped maize spread underneath them. The results support the hypotheses that the overyielding of species showing benefit in the asymmetric interspecific facilitation results from greater lateral deployment of roots and increased RLD, and that compatibility of the spatial root distribution of intercropped species contributes to symmetric interspecific facilitation in the faba bean/maize intercropping. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
A monoclonal antibody against wheat germ sucrose synthetase is developed and characterized. Its use in studying the effect of cold acclimation on the expression of sucrose synthetase in winter and spring wheat plants is described. The antibody shows cross-reactivity with sucrose synthetase from maize and pea plants, as well as carrot cells. A gradual accumulation of the enzyme as a function of time spent at 2 degrees C is observed in both wheat varieties. In contrast, an initial sharp rise in the mRNA level is observed, which agrees with the previously reported response of maize plants subjected to anaerobic stress.  相似文献   

18.
19.
中国北方气候暖干化对粮食作物的影响及应对措施   总被引:35,自引:0,他引:35  
东北、华北和西北50a来的平均气温增幅高于全国平均水平,气候变暖明显,尤其冬季增温最显著。区域增暖的极端最低气温远比极端最高气温的贡献大。东北、华北大部、西北东部降水量明显减少,平均每10a减少20—40mm,尤其春夏季减少最明显。这种趋势一直延续到20世纪90年代以后,干旱化趋势非常突出。在综述我国北方现代气候变化基本特征是暖干化的基础上,重点阐述了喜凉作物冬小麦、春小麦、马铃薯和喜温作物水稻、玉米、谷子、糜子等7种主要粮食作物的生长发育、品种熟性、种植区域与面积、产量与品质等对气候暖干化的响应特征。揭示了气候暖干化使春播作物播期提早,苗期生长发育速度加快,营养生长期提前,生殖生长期和全生育期延长;秋作物发育期推迟,生殖生长期和全生长期延长;越冬作物播期推迟,越冬死亡率降低,种植风险减少,春初提前返青,生殖生长期提早,全生育期缩短。使作物适宜种植区域向高纬度高海拔扩展;品种熟性向偏中晚熟高产品种发展;喜温作物和越冬作物以及冷凉气候区的作物种植面积迅速扩大;在旱作区种植不较耐旱的玉米、春小麦等作物种植面积受到制约。对雨养农业区的作物气候产量影响严重,尤其对不够耐旱的小麦和玉米的气候产量受影响最大;对较耐旱的谷子、糜子、马铃薯等影响较轻。从作物属性而言,对喜温作物水稻、玉米和越冬作物冬小麦有利于气候产量提高;对喜凉作物春小麦和马铃薯的气候产量将产生不利影响。同时,提出了从5个方面应对气候暖干化的技术措施,调整作物种植结构,确保粮食生产安全;根据不同气候年型调整各种作物种植比例;针对不同气候区域发展优势作物和配置作物种植格局;采取不同栽培技术和管理模式应对气候变化;采取综合配套技术提髙抵御灾害能力。为粮食作物安全生产和种植结构调整与布局提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号