首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shoot and root growth rate, carbohydrate accumulation (includingfructan), reducing sugar content and dry matter percentage weremeasured in six wheat cultivars, ranging from winter to springtypes, grown at either 5 or 25 °C. At 5 °C (comparedwith 25 °C), the relative growth rate (RGR) of shoots wassimilarly reduced in all cultivars, but the RGR of shoots wasmore affected in winter wheats. This difference resulted insmaller root:shoot ratios than in spring wheats, which alsodeveloped more first-order lateral roots. A direct relationshipbetween carbohydrate accumulation at low temperatures and reductionin root growth was established. These results suggest that differentialshootvs.root growth inhibition at low temperature may play akey role in carbohydrate accumulation at chilling temperatures.This differential response might lead to improvements in survivalat temperatures below 0 °C, regrowth during spring, andwater and nutrient absorption at low temperatures.Copyright1997 Annals of Botany Company Wheat; Triticum aestivum; low temperatures; root growth; root: shoot ratio; sugar accumulation  相似文献   

2.
Engels  C. 《Annals of botany》1994,73(2):211-219
Maize (Zea mays L.) and spring wheat (Triticum aestivum L.)were grown in nutrient solution at uniformly high air temperature(20 °C), but different root zone temperatures (RZT 20, 16,12 °C). To manipulate the ratio of shoot activity to rootactivity, the plants were grown with their shoot base includingthe apical meristem either above (i.e. at 20 °C) or withinthe nutrient solution (i.e. at 20, 16 or 12 °C). In wheat, the ratio of shoot:root dry matter partitioning decreasedat low RZT, whereas the opposite was true for maize. In bothspecies, dry matter partitioning to the shoot was one-sidedlyincreased when the shoot base temperature, and thus shoot activity,were increased at low RZT. The concentrations of non-structuralcarbohydrates (NSC) in the shoots and roots were higher at lowin comparison to high RZT in both species, irrespective of theshoot base temperature. The concentrations of nitrogen (N) inthe shoot and root fresh matter also increased at low RZT withthe exception of maize grown at 12 °C RZT and 20 °Cshoot base temperature. The ratio of NSC:N was increased inboth species at low RZT. However this ratio was negatively correlatedwith the ratio of shoot:root dry matter partitioning in wheat,but positively correlated in maize. It is suggested that dry matter partitioning between shoot androots at low RZT is not causally related to the internal nitrogenor carbohydrate status of the plants. Furthermore, balancedactivity between shoot and roots is maintained by adaptationsin specific shoot and root activity, rather than by an alteredratio of biomass allocation between shoot and roots.Copyright1994, 1999 Academic Press Wheat, Triticum aestivum, maize, Zea mays, root temperature, shoot meristem temperature, biomass allocation, shoot:root ratio, carbohydrate status, nitrogen status, functional equilibrium  相似文献   

3.
Plant growth was assessed and cellular protein per nuclear DNAamount measured in root meristems and in callus derived fromembryos of a spring (‘Katepwa’) and a winter variety(‘Beaver’) of allohexaploid wheat exposed to lowtemperature treatment. The data obtained were used to test whetherthese genetically distinct varieties of wheat responded differentiallyto cold treatment. Seedlings were grown for 14 d at 20°Cand then transferred to 4°C for 14 d before returning themto 20°C, or else were maintained continuously at 20°C.In winter wheat, root growth at 4°C was significantly greaterover the first 7 d following transfer to 4°C compared withplants retained at 20°C, whereas in spring wheat it wasreduced at 4°C. The pattern of accumulation of cellularprotein for both root meristem cells and in callus cells wasalso generally enhanced at 4°C compared with 20°C inwinter wheat but not in spring wheat. Thus, clear inter-varietaldifferences were established both for dry weight accumulationand cellular protein, and the callus data clearly show thatthe low-temperature-induced accumulation of protein is a cellularphenomenon not necessarily linked to development. The extentto which cold-shock proteins are a component of this low temperature-inducedincrease in cellular protein is discussed. Copyright 2000 Annalsof Botany Company Protein, spring wheat, temperature, tissue culture, Triticum aestivum, winter wheat  相似文献   

4.
Rye (Secale cereale cv. Rheidol) and wheat (Triticum aestivumcv. Mardler) were grown at shoot/root temperatures of 20/20°C (warm grown, WG plants), 8/8 °C (cold grown, CG plants)and 20/8 °C (differential grown, DG plants). Plants fromcontrasting growth temperature regimes were standardized andcompared using a developmental timescale based on accumulatedthermal time (°C d) at the shoot meristem. Accumulationof dry matter, nitrogen and potassium were exponential overthe time period studied (150–550 °C d). In rye, therates of plant dry matter and f. wt accumulation were linearlyrelated to the temperature of the shoot meristem. However, inwheat, although the rates of plant dry matter and f. wt accumulationwere temperature dependent, the linear relationship with shootmeristem temperature was weaker than in rye. The shoot/rootratio of rye was stable irrespective of growth temperature treatment,but the shoot/root ratio of wheat varied with growth temperaturetreatment. The shoot/root ratio of DG wheat was 50% greaterthan WG wheat. In both cereals, nutrient concentrations anddry matter content tended to be greater in organs exposed directlyto low temperatures. The mean specific absorption rates of nutrientswere calculated for the whole period studied for each species/temperaturecombination and were positively correlated with both plant shoot/rootratio and relative growth rate. The data suggest that nutrientuptake rates were influenced primarily by plant demand, withno indication of specific nutrient limitations at low temperatures. Nutrient accumulation, relative growth rate (RGR), rye, Secale cereale cv. Rheidol, temperature, thermal time, Triticum aestivum cv. Mardler, wheat  相似文献   

5.
The objective of this study was to identify plasma membraneproteins that are specifically induced by cold acclimation inwheat (Triticum aestivum L.). Two cultivars with a marked differencein the genetic ability to cold-acclimate, namely, spring wheat(cv. Chinese Spring) and winter wheat (cv. Norstar), were usedas the experimental material. After four weeks of growth ina cold chamber, the freezing tolerance in the shoots of winterwheat increased to –18°C, whereas it increased onlyto –8°C in the shoots of spring wheat. In the caseof roots from both cultivars, freezing tolerance increased onlyslightly after the growth in the cold environment. Cold acclimationinduced remarkable changes in the electrophoretic patterns ofplasma membrane proteins which depended on both the cultivarand the tissue examined. Levels of polypeptides with molecularmasses from 22 to 31 kDa decreased in both the root and shootplasma membranes from both cultivars. Among these polypeptides,levels of those of 28 and 26 kDa decreased abruptly after oneweek of cold acclimation. By contrast, levels of polypeptidesof 89, 83, 52, 23, 18 and 17 kDa increased specifically in theshoots of winter wheat. The increases in the levels of the 23-,18- and 17-kDa polypeptides were proportional to the developmentof freezing tolerance. Freeze-fracture electron microscopy ofplasma membranes from shoot cells revealed that the number ofintramembrane particles on the fracture faces decreased markedlyin winter wheat after cold acclimation, but to a lesser extentin spring wheat. These results suggest that the plasma membranesmight undergo molecular reorganization during cold acclimation. 1Contribution no. 3709 from the Institute of Low TemperatureScience, Hokkaido University.  相似文献   

6.
The role of ABA in the induction of freezing tolerance was investigatedin two wheat (T. aestivum L.) cultivars, Glenlea (spring var)and Fredrick (winter var). Exogenous application of ABA (5x10–5M for 5 days at 24°C) increased the freezing tolerance ofintact plants by only 3°C (LT50) in both cultivars. Maximalfreezing tolerance (LT50 of –9°C for Glenlea and –17°Cfor Fredrick) could only be obtained with a low temperaturetreatment (6/2°C; day/night) for 40 days. These resultsshow that exogenously applied ABA cannot substitute for lowtemperature requirementto induce freezing tolerance in intactwheat plants. Furthermore, there was no increase in the endogenousABA level of wheat plants during low temperature acclimation,suggesting the absence of an essential role for ABA in the developmentof freezing tolerance in intact plants. On the other hand, ABAapplication (5x10–5 M for 5 days at 24°C) to embryogenicwheat calli resulted in an increase of freezing tolerance similarto that achieved by low temperature. However, as in intact plants,there was no increase in the endogenous ABA level during lowtemperature acclimation of calli. These results indicate thatthe induction of freezing tolerance by low temperature is notassociated with an increase in ABA content. Using an antibodyspecific to a protein family associated with the developmentof freezing tolerance, we demonstrated that the induction offreezing tolerance by ABA in embryogenic wheat calli was correlatedwith the accumulation of a new 32 kDa protein. This proteinis specifically induced by ABA but shares a common antigenicitywith those induced by low temperature. These results suggestthat ABA induces freezing tolerance in wheat calli via a regulatorymechanism different from that of low temperature. (Received June 15, 1993; Accepted September 16, 1993)  相似文献   

7.
Wheat, Triticwn aestivum L., the winter cultivars Hobbit andCappelle-Desprez, and the spring cultivars Sicco and KJeiber,were grown in normal air or air enriched with CO2 either outdoorsin a glass-roofed cage or in controlled environment rooms. Inneither the winter nor the spring wheat was growth increaseddue to enrichment with CO2 before anthesis. Enrichment of thetwo winter wheat cultivars increased shoot dry weight significantlyat 15 d after anthesis but produced no significant increasein grain yield. With the spring cultivars there was a significantincrease in shoot dry weight by 18 d after anthesis and thegrain yield was also larger due to an increase in grain size.Shoot weight increased because the stems were larger, and therewas a diversion of assimilate from grain growth to late tillerproduction. Root tissue comprised less than 20% of the totaldry matter at anthesis (for all cultivars); effects of CO2 enrichmenton root growth appeared to be less important than effects onshoot and ear growth. Growth and yield responses to CO2 enrichmentwere observed (for the spring cultivars) at irradiances of both250 and 635 µE m–2 s–1, but the effects weregreater at the lower irradiance. Key words: CO2 enrichment, Wheat, Cultivar  相似文献   

8.
The temperature of the roots and shoots of Zea mays plants werevaried independently of each other and the rates of leaf extensionand leaf water potentials were measured. Restrictions of leafextension occurred when root temperatures were lowered from35 to 0 °C, but leaf water potentials were lowered onlyat root temperatures below 5 °C. Similar changes in ratesof leaf extension were measured at air temperatures from 30to 5 °. Between 30 and 35 °C air temperature, in anunsaturated atmosphere, restrictions of leaf extension wereassociated with low leaf water potentials. It was concluded that, at root temperatures 5 to 35 °C,and shoot temperatures 5 to 30 °C, water stress was notthe main factor restricting the extension of Zea mays leaves.  相似文献   

9.
Seedlings of Secale cereale cv. Rheidol and Triticum aestivumcv. Mardler were grown at shoot/root temperatures of 20/20 °C,20/8 °C and 8/8 °C. During vegetative growth both cerealsproduced leaves, tillers and roots in a defined pattern, ata species-specific rate which was linearly related to the temperatureof the shoot meristem. Thus, plant development could be standardizedon a temperature x time (°C d) basis despite contrastinggrowth-temperature treatments. When compared at a similar developmentalstage, the cooling of whole plants or of plant roots resultedin an increase in the d. wt: f. wt ratio of both shoot and roottissues, a decrease in the length of both the longest shootand root, and the development of broader and thicker leaves.Although the effects of temperature on developmental characteristicscould be accurately predicted by an empirical relationship,the effects on morphological characteristics could not. Development, phyllochron, rye, Secale cereale cv. Rheidol, temperature, thermal time, Triticum aestivum cv. Mardler, wheat  相似文献   

10.
KIEL  C.; STAMP  P. 《Annals of botany》1992,70(2):125-128
The objectives of this investigation were to determine: (a)the general effect of temperature on internal root anatomy;(b) whether genotypic differences in such root traits exist;and (c) the association between internal root traits and shootgrowth, lateral root branching and cold tolerance of maize (Zeamays L.). Seedlings of 20 central European hybrids were grownunder high or low temperature (25/22·5 °C or 15/12·5°C day/night temperatures) until the third leaf was fullyexpanded. Light microscopy of cross sections revealed a largerdiameter of primary roots at low temperature which was due toa larger stele diameter and a thickening of the cortex. Concurrently,an increase in total cross sectional area of metaxylem elementswas obtained. It is assumed that the modification of the internalroot structure by temperature has an effect on both axial andradial water flow capacity. For all anatomical traits studied,variability between genotypes was apparent under both growingconditions. Furthermore, different genotypic responses to temperaturewere observed. However, basic differences between cold-tolerantand cold-sensitive genotypes did not exist. While at high temperatureroot traits and shoot growth were significantly and positivelycorrelated, at low temperature the correlation coefficient wasinsignificant. Consequently, it was not possible to characterizethe performance of the shoot at low temperature based on anatomicaltraits of the root. Moderate, positive correlation coefficientswere obtained between internal root traits and lateral rootbranching. The potential use of root anatomical traits as indirectselection criteria is discussed. Chilling tolerance, genotypes, root anatomy, Zea mays L  相似文献   

11.
Research has shown that when plant roots are exposed to a dryingsoil a non-hydraulic (chemical) signal is produced in the rootand transported to the shoot, causing stomatal closure and growthretardation. This study was designed to reveal genetic diversityin wheat response to soil conditions which elicit a root signal,as the first step in the investigation of the genetic controlof the production of and the response to the root signal. Five spring wheat (Triticum aestivum L.) cultivars were establishedin the growth chamber in soil-filled polyvinyl chloride tubes,120 cm long and of an internal diameter of 10·2 cm. Soilwas well fertilized and wet to field capacity at emergence whentwo treatments were imposed: (1) tubes were watered from thetop as needed to eliminate stress (control); and (2) tubes hada constant water table at a soil depth of 100 to 120 cm, withno applied water. Measurements were performed on five dateson leaf water status and stomatal diffusive resistance. Above-groundbiomass and grain yield per plant were determined at maturity. The water table treatment resulted in dry and hard top soilconditions which were previously indicated to elicit a possibleroot signal. Under these experimental conditions, cultivarsdiffered in their leaf water status, stomatal diffusive resistance(Rs) and plant production. In the control treatment, Rs of cultivarsincreased with reductions in their relative water content (RWC)and leaf water potential (LWP), indicating the expected controlof Rs by leaf water status. Under conditions of a drying topsoil, relative water content (RWC) and leaf water potential(LWP) increased in cultivars that had a higher Rs, indicatingthat stomatal activity was controlling leaf water status. Itwas therefore suggested that the drying top soil elicited aroot signal which caused stomatal closure and reduced plantproduction. Under such conditions, two cultivars (Bethlehemand V748) consistently maintained relatively low Rs and highplant production, despite their relatively lower RWC and LWP,as compared with cvs C97, V747 and V652. Limited observationssuggest that in these two cultivars relatively fewer roots mayhave been exposed to the drying top soil, as compared with theother three cultivars. Key words: Triticum aestivum, cultivars, soil moistrue, drought stress, root, root signal, stomata, relative water content, leaf water potential, biomass, yield  相似文献   

12.
Molecular Characterization of a Barley Gene Induced by Cold Treatment   总被引:4,自引:1,他引:3  
A cDNA library was made from low positive temperature (6 ?C/2?C) grown barley shoot meristems. Several genes which are differentiallyexpressed, as measured by mRNA abundance, were selected fromthe library using a differential screen. This paper reportsan analysis of in vivo expression in several cultivars, theDNA sequence, copy number and chromosomal location of one gene(BLT14). In addition, genomic restriction fragment length polymorphismfor this gene in the 10 most widely UK-grown spring and 9 mostwidely UK-grown winter barley cultivars is analysed. Key words: Hordeum vulgare, low temperature, RFLP, differential expression, cDNA sequence  相似文献   

13.
The fatty acid composition of phospholipids in the microsomesand the vanadate-sensitive H+-ATPase activity of the roots ofone-year-old Scots pine (Pinus sylvestris L.) seedlings werestudied during flushing in spring. The seedlings in hydroponiccultures were subjected to different root temperatures (5, 12or 20°C). The shoot was maintained at 20/15° C (day/night)during the 35 d experiment. After 35 d at 5° C, root growthwas totally inhibited and shoot growth partly inhibited. In roots grown at 5° C the fatty acid composition of themicrosomal phospholipids and the degree of fatty acid unsaturation(bond index) were unchanged, while in roots grown at 12 and20° C the fatty acid composition changed and bond indexdecreased. At those root temperatures, the most obvious changewas a decline in the proportion of linolenic acid (C18:3). Inthe new white roots grown either at 12°C or 20°C theproportion of C18:2 was higher and the proportion of C18:3 lowerthan in 1-year-old roots. Independently of root temperature,H+-ATPase activity, determined on a fresh weight basis, declinedto half of the original activity during the experiment. Thedecline in H+ -ATPase activity was most rapid during the firstweek. In the old roots the decline in H+-ATPase activity followedclosely the decline in amount of membrane protein. In new rootsH+-ATPase activity was high and increased with increasing roottemperature. These results suggest that in the roots of Scotspine seedlings, vanadate-sensitive H+-ATPase activity is dependenton age, while changes in the microsomal fatty acid compositionof phospholipids are regulated mainly by root temperature. Key words: Fatty acids of phospholipids, microsomes, H+-ATPase, root temperature, Scots pine  相似文献   

14.
Low soil water potential and low or high root temperatures are important stresses affecting carbon allocation in plants. This study examines the effects of these stresses on carbon allocation from the perspective of whole plant mass balance. Sixteen-day old spring wheat seedlings were placed in a growth room under precisely controlled root temperatures and soil water potentials. Five soil water potential treatments, from −0.03 MPa to −0.25 MPa, and six root temperature treatments, from 12 to 32°C were used. A mathematical model based on mass balance considerations was used, in combination with experimental measurements of rate of net photosynthesis, leaf area, and shoot/root dry masses to determine photosynthate allocation between shoot and root. Partitioning of photosynthates to roots was the lowest at 22–27°C root temperature regardless soil water potential, and increased at both lower and higher root temperatures. Partitioning of photosynthates to the roots increased with decreasing soil water potential. Under the most favourable conditions, i.e. at −0.03 MPa soil water potential and 27°C root temperature, the largest fraction, 57%, of photosynthates was allocated to the shoots. Under the most stressed conditions, i.e. at −0.25 MPa soil water potential and 32°C root temperature, the largest fraction, more than 80%, of photosynthates was allocated to roots.  相似文献   

15.
Grain weight at maturity of the wheat cultivar Banks was reducedby about 5% for each 1 °C rise in daily mean post-anthesistemperature in the range from 17.7 to 32.7 °C, using grainweight at 17.7 °C as the base. In contrast, the rice cultivarCalrose had a stable grain weight up to 26.7 °C and abovethat showed a 4.4% drop in weight per 1 °C increase in meanpost-anthesis temperatures up to 35.7 °C, using grain weightat 26.7 °C as the base. In both wheat and rice there wasa reduction in the duration of grain growth with increasingtemperature up to a mean of 26.7 °C. In this range rice,but not wheat, showed a compensating increase in the rate ofdry-matter accumulation. Above 26.7 °C the rate of dry-matteraccumulation fell in both species, although this was more stablein rice than in wheat. In wheat the duration of grain growthcontinued to decrease at temperatures above 26.7 °C, butshowed little change in rice up to 35.7°C, the maximum tested.These data are discussed in relation to the physiological, biochemicaland physical constraints that may act to regulate grain developmentin wheat and rice at high temperature. Triticum aestivum, oryza sativa, grain development, high temperature effects  相似文献   

16.
The temperatures of the roots, the apical meristem, and theshoots of Zea mays plants were varied independently of eachother and the rates of leaf extension were measured. When thetemperature of the apical meristem and region of cell expansionat the base of the leaf was kept at 25 °C, changes of leafextension in response to changes of root and shoot temperatureswere less pronounced. When the temperature of the meristematicregion was changed by increments of 5 or 10 °C from 0 to40 °C, and the root and shoot temperatures were kept at25 °C, rapid changes in leaf extension occurred. It was concluded that the rates of leaf extension were controlledat root-zone temperatures of 5 to 35 °C by heating or coolingof the meristematic region. Changes in rates of leaf extensionin response to changes in air temperature were attributed todirect effects on the temperature of the meristematic regionand on the physiology of the leaf.  相似文献   

17.
Exposing cold-grown (6°C) plants of a winter cultivar (Avalon)and a spring cultivar (Highbury) of wheat to a single warm night(18 h and 25°C) significantly increased the photosyntheticrate and stomatal conductance of fully-expanded leaves withoutaffecting the calculated, substomatal CO2 pressure. Prior to the warm-night treatment net photosynthesis and stomatalconductance in Avalon were very small at high leaf temperaturesduring measurement (25–30°C). Such high temperatureinhibitions were not observed in Highbury. Exposure to the warm-nighttreatment alleviated these inhibitions in Avalon. Consequently,the temperature response of photosynthesis was similar in theleaves of the treated cultivars and showed a relatively broadoptimum. The application of exogenous abscisic acid in the transpirationstream to the leaves of treated plants caused a reduction ofsimilar proportions in the steady-state rate of photosynthesisand in stomatal conductance and essentially reversed the effectsof the warm-night treatment in a manner which depended on thecultivar. The endogenous abscisic acid content of leaves declinedby 50% during the warm-night treatment. In conjunction, thesedata suggest that changes in the content of abscisic acid inthe leaf may regulate the observed temperature acclimatizationof apparent photosynthesis in the fully-expanded leaves of cold-grownwheat. Key words: Abscisic acid, photosynthesis, stomatal conductance, temperature, acclimatizatio  相似文献   

18.
Spring wheat (Triticum aestivumL., ‘Chablis’) wasgrown under field conditions from sowing until harvest maturity,except for a 12-d period [70–82 days after sowing (DAS)coinciding with anthesis] during which replicated crop areaswere exposed to a range of temperatures within two pairs ofpolyethylene-covered temperature gradient tunnels. At 82 DAS,an increase in mean temperature from 16 to 25 °C duringthis treatment period had no effect on above-ground biomass,but increased ear dry weight from 223 to 327 g m-2and, at 83DAS, reduced root biomass from 141 to 63 g m-2. Mean temperatureover the treatment period had no effect on either above-groundbiomass or grain yield at maturity. However, the number of grainsper ear at maturity declined with increasing maximum temperaturerecorded over the mid-anthesis period (76–79 DAS) and,more significantly, with maximum temperature 1 d after 50% anthesis(78 DAS). Grain yield and harvest index also declined sharplywith maximum temperature at 78 DAS. Grain yield declined by350 g m-2at harvest maturity with a 10 °C increase in maximumtemperature at 78 DAS and was related to a 40% reduction inthe number of grains per ear. Grain yield was also negativelyrelated to thermal time accumulated above a base temperatureof 31 °C (over 8 d of the treatment from 5 d before to 2d after 50% anthesis). Thus, grain fertilization and grain setwas most sensitive to the maximum temperature at mid-anthesis.These results confirm that wheat yields would be reduced considerablyif, as modellers suggest, high temperature extremes become morefrequent as a result of increased variability in temperatureassociated with climate change.Copyright 1998 Annals of BotanyCompany Triticum aestivum, spring wheat, temperature, grain number, grain yield, root growth.  相似文献   

19.
Different cultivars of wheat (Triticum aestivum L.) were grownin cabinets, under a 12 h photoperiod, at constant temperatures,and high day/low night and low day/high night temperatures.Plants were also transferred at different ages, between 18/10°C and 10/18 °C regimes. Application of the growth regulatorsCCC and TIBA was tested at 18/10 °C and GA3 and IAA at 10/18°C. The reversal of day and night temperatures did not affect spikedifferentiation or the numbers of leaves and elongating internodes.However, tillering and tiller development were markedly promotedby the low day/high night temperature regimes whereas the elongationof leaf blades and stem internodes were suppressed under theseregimes. These effects were attributed to the effects of thetemperature regimes on the endogenous hormone balance of theplants. Considering the results of the transfer and growth regulatortreatments it was concluded that there were no obligatory associationsamong the number of tillers appearing, their subsequent development,leaf blade length, and stem elongation. It is suggested thatthe study of the physiological mechanisms controlling thesecharacters may benefit from experimentation under reciprocallydiffering day night temperature regimes.  相似文献   

20.
Solution culture experiments with spring wheat (Triticum aestivumcv. Neepawa) showed that the critical phosphorus concentrationin the shoot (CPC) was lower when root temperatures were optimalfor growth. Root temperatures of 10, 15, 20 and 25°C wereused, the optimal was 25°C. The plants were sampled at definedstages, either at 4·0 g fr. wt. or with 6 mature leavesand the phosphorus (P) status of the plants at the samplingtime was evaluated by observing the responses of other plantsto an additional supply of P. These two precautions were criticalto the interpretation of the data and may explain the discrepancyin the literature about the relationship between plant growthrate and the CPC. Key words: Relative growth rate, Wheat  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号