首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of Mn deficiency on plant growth and activities ofsuperoxide dismutase (SOD) was studied in hydroponically-grownseedlings of transgenic tobacco (Nicotiana tabacum L.) engineeredto overexpress FeSOD in chloroplasts or MnSOD in chloroplastsor mitochondria. In comparison to the non-transgenic parentalline, the activity of MnSOD in the lines overproducing MnSODwas 1.6-fold greater, and the activity of FeSOD in the FeSOD-overproducinglines was 3.2-fold greater, regardless of the Mn treatment (deficientor sufficient). The MnSOD activities decreased due to Mn deficiency,while activities of FeSOD and Cu/ZnSOD remained unaffected 25d after transplanting (DAT). With an increased duration of theMn deficiency stress (45 DAT), FeSOD activity decreased, andthat of MnSOD continued to decrease, while Cu/ZnSOD activitysimultaneously increased. Under Mn sufficiency, non-transgenicparental plants had greater shoot biomass than the transgenics;however, when subjected to Mn deficiency stress, non-transgenicparents suffered a proportionally greater growth reduction thantransgenic lines. Thus, overproduction of MnSOD in chloroplastsmay provide protection from oxidative stress caused by Mn deficiency.Copyright 1999 Annals of Botany Company Manganese deficiency, Nicotiana tabacum, superoxide dismutase (SOD), transgenic tobacco.  相似文献   

2.
We investigated the effect of salt stress on enzymatic activity of superoxide dismutase (SOD) isozymes in shoot and root tissues of salt tolerant and sensitive wheat (Triticum aestivum L. and Triticum durum Defs.) cultivars. Ten day old seedlings were subjected to 0.7 M NaCl stress for 3 and 5 days. Seedlings treated in the same manner without salt stress served as controls. Activity of SOD isozymes in root and shoot extracts was determined by activity staining of native polyacrylamide gels. In both shoot and root extracts of examined cultivars two isozymes of SOD, namely MnSOD and Cu/ZnSOD were identified. Cu/ZnSOD activity comprised 90 % of total SOD activity in both root and shoot tissues. Salt stress caused 1–1.5 fold increase in MnSOD activity of shoots in tolerant cultivars when compared with non-stressed controls. Under stress conditions, compared to controls all cultivars exhibited reduced MnSOD activity in root tissues. Cu/ZnSOD activity, on the other hand, was remarkably enhanced (3–4 fold) in root extracts of the tolerant cultivars, whereas it was reduced in the sensitive ones.  相似文献   

3.
《Free radical research》2013,47(5):299-309
Copper, zinc superoxide dismutase (Cu, ZnSOD) and manganese superoxide dismutase (MnSOD) activities were measured in mouse large intestinal mucosa during dimethylhydrazine (DMH) carcinogenesis. Mice were divided into five groups. Group A was subcutaneously injected with DMH (20mg/kg) weekly and fed with a diet containing 0.2% cholic acid (C) and 0.8% indole (I). Group B was injected with DMH and given indole feeding. Group C was treated with DMH injection and cholic acid feeding. Group D was given DMH injection alone. Group E was an age-matched control group given 0.9% NaCl injection. The experiment last 21 weeks. The Cu, ZnSOD activity of intestinal mucosa in group A animals began to increase significantly at the 7th week of the experiment. In groups B, C and D, however, this enzyme was not elevated statistically until the 16th week, and then each of these groups kept an increased Cu, ZnSOD level the rest of the experimental period. MnSOD activity was elevated statistically in group C animals at the 7th week. The enzyme activity in group A and D animals increased at the 9th week, but the enzyme activity did not increase statistically until the 11th week in group B. After the 16th week of the experiment the increased activity of MnSOD in all experimental groups returned to the level of the control group. Large intestinal cancer tissues had increased Cu, ZnSOD activity and decreased MnSOD activity.  相似文献   

4.
Copper, zinc superoxide dismutase (Cu, ZnSOD) and manganese superoxide dismutase (MnSOD) activities were measured in mouse large intestinal mucosa during dimethylhydrazine (DMH) carcinogenesis. Mice were divided into five groups. Group A was subcutaneously injected with DMH (20mg/kg) weekly and fed with a diet containing 0.2% cholic acid (C) and 0.8% indole (I). Group B was injected with DMH and given indole feeding. Group C was treated with DMH injection and cholic acid feeding. Group D was given DMH injection alone. Group E was an age-matched control group given 0.9% NaCl injection. The experiment last 21 weeks. The Cu, ZnSOD activity of intestinal mucosa in group A animals began to increase significantly at the 7th week of the experiment. In groups B, C and D, however, this enzyme was not elevated statistically until the 16th week, and then each of these groups kept an increased Cu, ZnSOD level the rest of the experimental period. MnSOD activity was elevated statistically in group C animals at the 7th week. The enzyme activity in group A and D animals increased at the 9th week, but the enzyme activity did not increase statistically until the 11th week in group B. After the 16th week of the experiment the increased activity of MnSOD in all experimental groups returned to the level of the control group. Large intestinal cancer tissues had increased Cu, ZnSOD activity and decreased MnSOD activity.  相似文献   

5.
为研究过量表达的超氧化物歧化酶基因MnSOD对玉米抗逆性的作用,构建了小麦来源MnSOD基因的单子叶植物高效表达载体,用基因枪法转化优良玉米自交系胚性愈伤组织。经潮霉素梯度浓度培养基筛选,从阳性愈伤组织再生获得9个正常结实的植株。其中5株经PCR和Southern印迹检测表现为阳性,表明外源基因己整合到玉米基因组中。提取SOD酶液,非变性聚肉烯酰胺浓度梯度凝胶电泳分离,用H2O2 5mmol/L抑制FeSOD和CU/ZnSOD活性,氯化硝基四氮唑蓝染色检测MnSOD酶活性。Southern印迹呈阳性的5个植株,MnSOD酶活性均高于未转基因的对照。甲基紫精氧化损伤处理后,用电解质渗漏率法测定阳性株系的叶片渗透液的电导率。结果表明,转基因株系的抗氧化损伤能力显著高于对照。  相似文献   

6.
《Free radical research》2013,47(1):401-410
In many pathological situations, tissue damage is caused by cellular generation of superoxide free radicals (O2-). These active species are generated during post-ischemic reperfusion of organs, in hyperoxic tissue, during acute and chronic inflammation and during exposure to ionizing radiation. Exogenous superoxide dismutase (SOD) was shown to significantly prevent such damage.

The genes for human cytosolic Cu/ZnSOD and mitochondrial MnSOD were cloned and introduced into an E. coli expression system. The proteins were expressed in high yields and purified to homogeneity, yielding pharmaceutical-grade materials. These enzymes were used in a variety of in vivo animal models for the demonstration of their protective effects against oxidative damage. Comparative pharmacokinetic studies in rats have revealed that the half-life of Cu/ZnSOD was 6–10min., while that of MnSOD was 5–6 hours, thus indicating that MnSOD may be superior to Cu/ZnSOD for the treatment of chronic diseases. Indeed, MnSOD was found to be erective as an anti-inflammatory agent in the rat carrageenan induced paw edema acute inflammation model. Both enzymes were also effective in ameliorating post-irradiation damage in mice exposed to whole-body or localized chest X-ray radiation.  相似文献   

7.
8.
YU  Q.; RENGEL  Z. 《Annals of botany》1999,83(2):175-182
The effect of copper (Cu), zinc (Zn) or manganese (Mn) deficiencyon the growth and activity of superoxide dismutase (SOD) formswas investigated in seedlings of narrow-leafed lupins (LupinusangustifoliusL.). Plants grown without Zn developed Zn deficiencysymptoms 24 d after sowing (DAS), and those grown without Mnshowed Mn deficiency symptoms 31 DAS. However, plants grownwithout Cu did not show visible leaf symptoms. Shoot dry weightwas decreased by Zn and Mn deficiency 24 DAS, and by Cu deficiency31 DAS. Soluble protein concentration was reduced considerablyby Zn deficiency 24 DAS, but was not affected by Cu deficiencyuntil 31 DAS. In contrast, soluble protein concentration inMn-deficient plants was higher than in control plants 31 DAS.Shoot concentration of micronutrients which were not suppliedto plants decreased significantly, with a simultaneous increasein concentration of one or more of the other nutrients analysed.The activities of total SOD, MnSOD and Cu/ZnSOD on a fresh weightbasis declined drastically in -Cu and -Zn plants 24 DAS. Onthe contrary, the activities of total SOD and Cu/ZnSOD on eithera fresh weight or soluble protein basis increased markedly in-Mn plants 24 DAS, and MnSOD activity increased significantlyin these plants 31 DAS. It was concluded that micronutrientdeficiency (Cu, Zn or Mn) altered the activities of SOD formsdepending on the kind and severity of the deficiency stress.Manipulation of the capacity of plants to tolerate oxidativestress may influence their capacity to tolerate micronutrientdeficiency.Copyright 1999 Annals of Botany Company. Copper,Lupinus angustifolius, manganese, deficiency, superoxide dismutase, zinc.  相似文献   

9.
Some clear dissimilarities occur among the varieties of Cryptococcus neoformans but there are few studies about the differences among individual yeast antioxidant enzymes. The total superoxide dismutase (SOD) activities and the copper, zinc-depend SOD (Cu,ZnSOD) and manganese-dependent SOD (MnSOD) isoenzymes of five reference C. neoformans strains belonged to A, B, C, AD and D serotypes (Table I) and other nine C. neoformans isolates (Table II) were determined. There were significant differences (p < 0.01 and p < 0.05) in total SOD activity among the varietie gattii (serotype C) and the other varieties. Cu,ZnSOD showed difference (p < 0.05) between A and D serotypes. These results point out a variety and serotype-independent SOD activity in C. neoformans reference strains and the other isolates that were evaluated.  相似文献   

10.
Two varieties of tobacco (Nicotiana tabacum var PBD6 and var SR1) were used to generate transgenic lines overexpressing Mn-superoxide dismutase (MnSOD) in the chloroplasts. The overexpressed MnSOD suppresses the activity of those SODs (endogenous MnSOD and chloroplastic and cytosolic Cu/ZnSOD) that are prominent in young leaves but disappear largely or completely during aging of the leaves. The transgenic and control plants were grown at different light intensities and were then assayed for oxygen radical stress tolerance in leaf disc assays and for abundance of antioxidant enzymes and substrates in leaves. Transgenic plants had an enhanced resistance to methylviologen (MV), compared with control plants, only after growth at high light intensities. In both varieties the activities of FeSOD, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase and the concentrations of glutathione and ascorbate (all expressed on a chlorophyll basis) increased with increasing light intensity during growth. Most of these components were correlated with MV tolerance. It is argued that SOD overexpression leads to enhancement of the tolerance to MV-dependent oxidative stress only if one or more of these components is also present at high levels. Furthermore, the results suggest that in var SR1 the overexpressed MnSOD enhances primarily the stromal antioxidant system.  相似文献   

11.
We examined the effect of lipopolysaccharide (LPS) treatment on the expression of manganese and copper/zinc superoxide dismutase (MnSOD and Cu/ZnSOD) mRNA and protein in resident peritoneal macrophages and lung endothelial cells derived from LPS-sensitive (LPS-s) and LPS-resistant (LPS-r) mice. Macrophages from both LPS-s and LPS-r mice treated with LPS for 24 h produced increased levels of MnSOD mRNA and protein. In contrast, levels of lung endothelial cell MnSOD mRNA and protein from LPS-s mice were increased by LPS treatment, while no increases in these parameters were observed in endothelial cells from LPS-r mice. Tumor necrosis factor-alpha (TNF alpha) treatment, however, did increase levels of MnSOD mRNA in both LPS-s and LPS-r endothelial cells to an equal extent. Both macrophage and endothelial cell Cu/ZnSOD mRNA and protein levels were not significantly affected by LPS treatment. These results demonstrate that the mutation that affects susceptibility to LPS in LPS-r mice exerts a differential influence on MnSOD inducibility in a cell specific manner.  相似文献   

12.
Eucaryotes have two major forms of superoxide dismutase (SOD), Cu,ZnSOD and MnSOD; in most tissues Cu,ZnSOD is present in higher amounts than MnSOD. To assay MnSOD, Cu,ZnSOD can be inhibited selectively by millimolar concentrations of cyanide ion. However, calculation of MnSOD activity from the differential cyanide inhibition assay is complex and small experimental errors can cause large errors in the calculated MnSOD activity. We have assessed how interaction of cyanide and hydrogen peroxide with cytochrome c can lead to further errors in the xanthine oxidase-cytochrome c assay for SOD. Alternatively, Cu,ZnSOD can be completely inactivated by 50 mM diethyldithiocarbamate (DDC) at 30 degrees C for 1 h without affecting the activity of MnSOD. Since DDC reduces cytochrome c, the treated samples must be thoroughly dialyzed or desalted before assay. In the case of lung homogenates, dialysis is not an extra step since fresh, untreated samples must also be dialyzed or desalted before assaying by the cytochrome c method. Cu,ZnSOD activity is equal to the activity in the untreated sample minus the activity in the DDC-treated portion of the sample. Another copper chelator, triethylenetetramine, did not inactivate Cu,ZnSOD and could not be used instead of DDC. For accurate measurement of both enzymes in samples where MnSOD contributes only a small fraction of the total SOD activity, the DDC method has the advantage that it provides a direct measure of the MnSOD activity without interference by Cu,ZnSOD.  相似文献   

13.
Damage to crops by drought is still a serious problem in large areas of the world. Considerable research has been undertaken to discover the mechanisms of drought injury and drought resistance of plants. However, the critical features of drought injury have not yet been identified. In the past ten years a free radical hypothesis has been suggested to account for subcellular damage caused by severe environments. Superoxide (oxygen radical) is normally produced in hydrated tissues. It is controlled by free radical scavenging reactions. One such scavenger is the enzyme superoxide dismutase (SOD). Under water stress, production of excess free radicals may occur in dehydrated plant tissues and this probably damages the membranes by causing peroxidation of the lipid components. So far few studies have been done to determine if drought injury is correlated with the free radical mechanism. In the present study, the SOD activities in wheat seedlings under water stress have been investigated by measuring the photoreduction of nitro blue tetrazolium using a spectrometric method. Meanwhile, the viabilities of wheat seedlings during drying were followed by tetrazolium test. These results provided information on the relationship between SOD activity and the dehydration tolerance of the plant. Results indicated that SOD activity changed with the time after germination. The activity of SOD of 24 h seedlings was 1.9 times higher than those of 72 h seedlings based on fresh weight. SOD activity in shoot was also higher than in root. These results were consistent with the results obtained from rating of the viabilities of seedlings during drying. The 24h seedlings were more tolerant of dehydration than 72 h seedlings and root were more sensitive of drought than shoot. In addition, shoot and root tips showed the higher SOD activities than non-tip region and they also showed a higher survival ability upon dehydration. In dehydration and subsequent rehydration, SOD activity, different from many other enzymes in plants, increased rather than declined during drying. After rehydration SOD activity returned to nearly the original level. Therefore, the positive correlations were found to exist between SOD activity and dehydration tolerance. It is reasonable to suggest that SOD enzyme may play a protective role against damage caused by free radicals which may be produced excessively during dehydration in wheat seedling.  相似文献   

14.
Rotifers are useful model organisms for aging research, owing to their small body size (0.1–1 mm), short lifespan (6–14 days) and the relative easy in which aging and senescence phenotypes can be measured. Recent studies have shown that antioxidants can extend the lifespan of rotifers. In this paper, we analyzed changes in the mRNA expression level of genes encoding the antioxidants manganese superoxide dismutase (MnSOD), copper and zinc SOD (CuZnSOD) and catalase (CAT) during rotifer aging to clarify the function of these enzymes in this process. We also investigated the effects of common life-prolonging methods [dietary restriction (DR) and resveratrol] on the mRNA expression level of these genes. The results showed that the mRNA expression level of MnSOD decreased with aging, whereas that of CuZnSOD increased. The mRNA expression of CAT did not change significantly. This suggests that the ability to eliminate reactive oxygen species (ROS) in the mitochondria reduces with aging, thus aggravating the damaging effect of ROS on the mitochondria. DR significantly increased the mRNA expression level of MnSOD, CuZnSOD and CAT, which might explain why DR is able to extend rotifer lifespan. Although resveratrol also increased the mRNA expression level of MnSOD, it had significant inhibitory effects on the mRNA expression of CuZnSOD and CAT. In short, mRNA expression levels of CAT, MnSOD and CuZnSOD are likely to reflect the ability of mitochondria to eliminate ROS and delay the aging process.  相似文献   

15.
16.
Superoxide dismutase (SOD) in-gel activity assay with selective inhibitors (KCN and H2O2) is one of the most commonly used methods for identification of SOD isoform types, i.e., FeSOD, MnSOD or Cu/ZnSOD, and evaluation of oxidative stress response in plants. However, there are potential pitfalls that surround this assay, such as problem to detect isoforms with low activity, comigration of SOD isoforms or application of inappropriate inhibitor concentration. We propose an improved method based on the combination of in-gel analysis of SOD activity and native-PAGE immunoblotting for identification of isoforms and determination of SOD isoenzyme activity pattern in potato. Depending on cultivar and growing conditions, one MnSOD, 3 FeSOD and 5–6 Cu/ZnSOD isoforms were identified in potato leaves. The most important qualitative difference between ex vitro- and in vitro-grown plants was the presence of additional FeSOD and Cu/ZnSOD isoforms in plantlets grown in vitro. Compared with results of in-gel activity assay with selective inhibitors, new method allowed accurate identification of comigrating FeSOD and Cu/ZnSOD isoforms and two protein bands of ambiguous identities. Potato SODs were also characterized by SDS-PAGE immunoblotting and single MnSOD (23.6 kDa), three Cu/ZnSOD polypeptides (17.9, 17 and 16.3 kDa) and single FeSOD (25.1 kDa) polypeptide were detected in leaves of four examined cultivars. The difference in the number of FeSOD and Cu/ZnSOD isoforms/polypeptides between native-PAGE and SDS-PAGE immunoblots suggests that SOD proteins may have undergone post-translational modifications affecting protein mobility or existence of isoforms that differ from each other in total protein charge, but not in molecular weight.  相似文献   

17.
2-Mercaptobenzimidazole (MBI) is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment is potentially harmful. In the present work, the toxic interaction of MBI with the important antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD) was investigated using spectroscopic and molecular docking methods. MBI can interact with Cu/ZnSOD to form an MBI-Cu/ZnSOD complex. The binding constant, number of binding sites and thermodynamic parameters were measured, which indicated that MBI could spontaneously bind with Cu/ZnSOD with one binding site through hydrogen bonds and van der Waals forces. MBI bound into the Cu/ZnSOD interface of two subdomains, which caused some microenvironmental and secondary structure changes of Cu/ZnSOD and further resulted in the inhibition of Cu/ZnSOD activity. This work provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme Cu/ZnSOD. The estimated methods in this work may be applied to probe molecular interactions of biomacromolecules and other pollutants and drugs.  相似文献   

18.
19.
Superoxide dismutases (SODs), antioxidant metalloenzymes, represent the first line of defense in biological systems against oxidative stress caused by excessive reactive oxygen species (ROS), in particular O(2)(?-). Two distinct members of SOD family were identified from Manila clam Ruditapes philippinarum (abbreviated as RpMnSOD and RpCu/ZnSOD). The structural analysis revealed all common characteristics of SOD family in both RpSODs from primary to tertiary levels, including three MnSOD signatures and two Cu/ZnSOD signatures as well as invariant Mn(2+)- and Cu/Zn(2+)-binding sites in RpMnSOD and RpCu/ZnSOD, respectively. Putative RpMnSOD and RpCu/ZnSOD proteins were predicted to be localized in mitochondrial matrix and cytosol, respectively. They shared 65.2% and 63.9% of identity with human MnSOD and Cu/ZnSOD, respectively. Phylogentic evidences indicated the emergence of RpSODs within molluscan monophyletic clade. The analogous spatial expression profiles of RpSODs demonstrated their higher mRNA levels in hemocytes and gills. The experimental challenges with poly I:C, lipopolysaccharide and Vibrio tapetis illustrated the time-dependent dynamic expression of RpSODs in hemocytes and gills. The recombinant RpMnSOD was expressed in a prokaryotic system and its antioxidant property was studied. The rRpMnSOD exhibited its optimum activity at 20?°C, under alkaline condition (pH 9) with a specific activity of 3299?U?mg(-1). These outcomes suggested that RpSODs were constitutively expressing inducible proteins that might play crucial role(s) in innate immunity of Manila clam.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号