首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
  国内免费   1篇
  2023年   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   11篇
  2012年   3篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1992年   1篇
  1990年   3篇
  1988年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
1.
Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin) after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A) or TGF-β receptor kinase (SB431542) prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl) mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.  相似文献   
2.
Differentiating intracellular from extracellular enzyme activity is important in soil enzymology, but not easy. Here, we report on an adjusted sonication method for the separation of intracellular from extracellular phosphatase activity in soil. Under optimal sonication conditions [soil:water ratio  =  1/8 (w/v) and power density  =  15 watt ml-1], the activity of alkaline phosphomonoesterase (phosphatase) in a Haplic Cambisol soil increased with sonication time in two distinct steps. A first plateau of enzyme activity was reached between 60 and 100 s, and a second higher plateau after 300 s. We also found that sonication for 100 s under optimal conditions activated most (about 80%) of the alkaline phosphatase that was added to an autoclaved soil, while total bacteria number was not affected. Sonication for 300 s reduced the total bacteria number by three orders of magnitude but had no further effects on enzyme activity. Our results indicate that the first plateau of alkaline phosphatase activity was derived from extracellular enzymes attached to soil particles, and the second plateau to the combination of extracellular and intracellular enzymes after cell lysis. We conclude that our adjusted sonication method may be an alternative to the currently used physiological and chloroform-fumigation methods for differentiating intracellular from extracellular phosphatase activity in soil. Further testing is needed to find out whether this holds for other soil types.  相似文献   
3.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   
4.
Miscanthus has a high potential as a biomass feedstock for biofuel production. Drought tolerance is an important breeding goal in miscanthus as water deficit is a common abiotic stress and crop irrigation is in most cases uneconomical. Drought may not only severely reduce biomass yields, but also affect biomass quality for biofuel production as cell wall remodeling is a common plant response to abiotic stresses. The quality and plant weight of 50 diverse miscanthus genotypes were evaluated under control and drought conditions (28 days no water) in a glasshouse experiment. Overall, drought treatment decreased plant weight by 45%. Drought tolerance – as defined by maintenance of plant weight – varied extensively among the tested miscanthus genotypes and ranged from 30% to 110%. Biomass composition was drastically altered due to drought stress, with large reductions in cell wall and cellulose content and a substantial increase in hemicellulosic polysaccharides. Stress had only a small effect on lignin content. Cell wall structural rigidity was also affected by drought conditions; substantially higher cellulose conversion rates were observed upon enzymatic saccharification of drought‐treated samples with respect to controls. Both cell wall composition and the extent of cell wall plasticity under drought varied extensively among all genotypes, but only weak correlations were found with the level of drought tolerance, suggesting their independent genetic control. High drought tolerance and biomass quality can thus potentially be advanced simultaneously. The extensive genotypic variation found for most traits in the evaluated miscanthus germplasm provides ample scope for breeding of drought‐tolerant varieties that are able to produce substantial yields of high‐quality biomass under water deficit conditions. The higher degradability of drought‐treated samples makes miscanthus an interesting crop for the production of second‐generation biofuels in marginal soils.  相似文献   
5.
Lignin is a key factor limiting saccharification of lignocellulosic feedstocks. In this comparative study, various lignin methods—including acetyl bromide lignin (ABL), acid detergent lignin (ADL), Klason lignin (KL), and modified ADL and KL determination methods—were evaluated for their potential to assess saccharification efficiency. Six diverse accessions of the bioenergy crop miscanthus were used for this analysis, which included accessions of Miscanthus sinensis, Miscanthus sacchariflorus, and hybrid species. Accessions showed large variation in lignin content. Lignin estimates were different between methods, but (highly) correlated to each other (0.54?≤?r?≤?0.94). The strength of negative correlations to saccharification efficiency following either alkaline or dilute acid pretreatment differed between lignin estimates. The strongest and most consistent correlations (?0.48?≤?r?≤??0.85) were obtained with a modified Klason lignin method. This method is suitable for high throughput analysis and was the most effective in detecting differences in lignin content (p?<?0.001) between accessions.  相似文献   
6.
Cattle manure can be processed to produce bioenergy, resulting in by‐products with different physicochemical characteristics. To evaluate whether application of such bioenergy by‐products to soils would be beneficial compared with their unprocessed counterpart, we quantified differences in greenhouse gas emissions and carbon (C) and nitrogen (N) dynamics in soil. Three by‐products (15N‐labeled cattle manure, from which anaerobic digestate was obtained, which was subsequently pyrolysed) were applied to a loess and a sandy soil in a laboratory incubation study. The highest losses of soil C from biological activity (CO2 respiration) were observed in manure treatments (39% and 32% for loess and sandy soil), followed by digestate (31% and and 18%), and biochar (15% and and 7%). Emissions of nitrous oxide (N2O) ranged from 0.6% of applied N from biochar to 4.0% from manure. Isotope labeling indicated that manure N was most readily mineralized, contributing 50% to soil inorganic N. The anaerobic digestate was the only by‐product increasing the mineral N pool, while reducing emissions of N2O compared with manure. In biochar treatments, less than 18.3% of soil mineral N derived from the biochar, while it did not constrain mineralization of native soil N. By‐products of anaerobic digestion and pyrolysis revealed soil fertility in addition to environmental benefits. However, the reported advantages lessen when the declining yields of C and N over the bioenergy chain are considered.  相似文献   
7.
An expressed sequence tag (EST) library of the key grassland species perennial ryegrass (Lolium perenne L.) has been exploited as a resource for microsatellite marker development. Out of 955 simple sequence repeat (SSR) containing ESTs, 744 were used for primer design. Primer amplification was tested in eight genotypes of L. perenne and L. multiflorum representing (grand-) parents of four mapping populations and resulted in 464 successfully amplified EST-SSRs. Three hundred and six primer pairs successfully amplified products in the mapping population VrnA derived from two of the eight genotypes included in the original screening and revealed SSR polymorphisms for 143 ESTs. Here, we report on 464 EST-derived SSR primer sequences of perennial ryegrass established in laboratory assays, providing a dedicated tool for marker assisted breeding and comparative mapping within and among forage and turf grasses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
8.
In the Netherlands, high traffic density and intensive animal husbandry have led to high emissions of reactive nitrogen (N) into the environment. This leads to a series of environmental impacts, including: (1) nitrate (NO3) contamination of drinking water, (2) eutrophication of freshwater lakes, (3) acidification and biodiversity impacts on terrestrial ecosystems, (4) ozone and particle formation affecting human health, and (5) global climate change induced by emissions of N2O. Measures to control reactive N emissions were, up to now, directed towards those different environmental themes. Here we summarize the results of a study to analyse the agricultural N problem in the Netherlands in an integrated way, which means that all relevant aspects are taken into account simultaneously. A simple N balance model was developed, representing all crucial processes in the N chain, to calculate acceptable N inputs to the farm (so-called N ceiling) and to the soil surface (application in the field) by feed concentrates, organic manure, fertiliser, deposition, and N fixation. The N ceilings were calculated on the basis of critical limits for NO 3 concentrations in groundwater, N concentrations in surface water, and ammonia (NH3) emission targets related to the protection of biodiversity of natural areas. Results show that in most parts of the Netherlands, except the western and the northern part, the N ceilings are limited by NH 3 emissions, which are derived from critical N loads for nature areas, rather than limits for both ground- and surface water. On the national scale, the N ceiling ranges between 372 and 858 kton year(-1) depending on the choice of critical limits. The current N import is 848 kton year(-1). A decrease of nearly 60% is needed to reach the ceilings that are necessary to protect the environment against all adverse impacts of N pollution from agriculture.  相似文献   
9.
In the Netherlands, nutrient emissions from intensive animal husbandry have contributed to decreased species diversity in (semi) natural terrestrial and aquatic ecosystems, pollution of groundwater, and possibly global warming due to N2O emissions. This paper presents the results of a modelling study presenting the impacts of both structural measures and improved farming practices on major nitrogen (N) fluxes, including NH3 and N2O emission, uptake, leaching, and runoff, in the Netherlands, using input data for the year 2000. Average annual fluxes (Gg N year(-1)) for the year 2000 were estimated at 132 for NH3 emission (160 Gg NH 3 year(-1)), 28 for N2O emission, 50 for N inflow to groundwater, and 15 for N inflow to surface water at a total N input of 1046. At this input, nitrate (NO3) concentrations in groundwater often exceeded the target of 50 mg NO3 l(-1), specifically in well-drained sandy soils. The ammonia (NH3) emissions exceeded emission targets that were set to protect the biodiversity of nonagricultural land. Improved farming practices were calculated to lead to a significant reduction in NH3 emissions to the atmosphere and N leaching and runoff to groundwater and surface water, but these improvements were not enough to reach all the targets set for those fluxes. Only strong structural measures clearly improved the situation. The NH3 emission target of 30 Gg NH3 year(-1), suggested for the year 2030, could not be attained, however, unless pig and poultry farming is completely banned in the Netherlands and all cattle stay almost permanently in low emission stables.  相似文献   
10.
The area of wet grasslands on peat soil in the Netherlands is slowly increasing at the expense of drained, agriculturally used grasslands. This study aimed (i) to assess the contribution of wet grasslands on peat soil to methane (CH4) emissions, and (ii) to explain differences among sites and between years in order to improve our understanding of controlling factors. For these purposes, a field study was conducted in the period 1994–1996 in the nature preserve Nieuwkoopse Plassen, which is a former peat mining and agricultural area. Net CH4 emissions were measured weekly to monthly with vented closed flux chambers at three representative sites, and at ditches near these sites. Three-years average of CH4 emissions was 7.9 g CH4 m–2 yr–1 for Drie Berken Zudde, 13.3 for Koole, and 20.4 for Brampjesgat. Ditches near the sites emitted 4.2–22.5 g CH4 m–2 yr–1. The time-course of CH4 emissions for all experimental sites and years was fit with a multiple linear regression model with ground water level and soil temperature as independent variables. Lowering or raising the ground water level by 5 cm could decrease or increase CH4 emissions by 30–50%. Therefore, ground water level management of these grasslands should be done with care.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号