首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以来源于米曲霉Aspergillus oryzae的11家族常温木聚糖酶AoXyn11A为母本,将其N端替换成同一家族耐热木聚糖酶EvXyn11TS的对应片段,构建出耐热杂合木聚糖酶AEx11A。将AoXyn11A和AEx11A基因分别在毕赤酵母GS115中进行表达并分析比较温度对表达产物酶活性的影响。结果表明,AEx11A的最适温度Topt为75℃,在70℃的半衰期t1/270为197 min,较AoXyn11A(Topt=50℃,t1/270=1.0 min)显著提高。通过对AEx11A结构的同源建模及其与AoXyn11A结构的比对,发现在AEx11A的N端引入了一个二硫键(Cys5–Cys32)。利用定点突变法将其5位的半胱氨酸突变为苏氨酸(C5T),去除该二硫键,以探讨其对AEx11A热稳定性的影响。分析表明,突变酶(AEx11AC5T)的Topt由突变前的75℃降为60℃,其t1/270和t1/280也分别由197 min和25 min缩短为3.0 min和1.0 min。  相似文献   

2.
本研究用宇佐美曲霉Aspergillus usamii的5家族β-甘露聚糖酶AuMan5A为母本,借助同源建模、分子对接及分子动力学模拟等理性设计方法,将AuMan5A的N-末端和C-末端分别截去3个无规则的氨基酸残基,构建出截短的β-甘露聚糖酶 AuMan5AN3C3.将AuMan5A和AuMan5AN3C3的编码基因分别在毕赤酵母GS115中进行表达,对表达产物进行了初步纯化并分析比较了其酶学特性及各自的表达水平. 结果表明,reAuMan5A和reAuMan5AN3C3的最适温度Topt均为70 ℃,reAuMan5AN3C3在60 ℃的半衰期t1/260为38 min,较reAuMan5A(t1/260=40 min)略有降低;在相同表达条件下,reAuMan5AN3C3上清液的β-甘露聚糖酶活性为73.4 U/mL,较reAuMan5A 的52.8 U/mL提高了39.0%;纯化的reAuMan5AN3C3酶比活性为182.7 U/mg protein,较reAuMan5A的126.3 U/mg protein提高了44.7%. 与reAuMan5A相比,reAuMan5AN3C3对角豆胶的Km值下降不明显,Vmax值有显著提高.  相似文献   

3.
以牛肠激酶作为研究对象,利用理性设计的方法提高其热稳定性。首先通过分子动力学模拟软件Gromacs v 4.5.5,FlexService以及B-FITTER软件预测出了肠激酶的柔性区Fragment 64~69,Fragment 85~90;然后结合β-转角序列统计学信息以及引入位置原有的残基不参与形成氢键的原则,确立了3个突变位点S67P,R87P以及Y136P;通过Quik ChangeTM 定点突变的方法引入突变位点,并进行了酶热稳定性分析。结果表明,R87P突变体酶的失活半衰(t1/2)和T5010 较野生型分别提高了3.1 min和11.8℃,同时,动力学常数(Km/kcat)测定结果显示酶活未受到显著影响。该策略有潜力应用于其他工业酶分子的热稳定性改造,为推动生物酶的工业化应用奠定基础。  相似文献   

4.
木聚糖酶是微生物半纤维素降解体系中的一种关键酶,被广泛地应用在工业中的多个领域。本研究为了提高木聚糖酶Umxyn10A (ABL73-883.1)的热稳定性,将Umxyn10A与GH 10家族4种耐热木聚糖酶进行多序列同源比对以及三维结构的同源建模分析,选定了Umxyn10A第31位氨基酸位点进行定点突变,将氨基酸Ala (A)突变为Phe (F)。分别将Umxyn10A和Umxyn10AA31F在大肠杆菌中进行重组表达,分析2种重组酶的酶学特性,结果发现,Umxyn10AA31F的最适反应温度为85℃,较野生重组酶提高了5℃;在65℃下的半衰期为105 min,较野生重组酶(15 min)提高了6倍;在70℃下突变重组酶的半衰期为15 min,较野生重组酶(5 min)提高了2倍;与此同时突变重组酶的pH耐受区间较原酶也有一定的增大。结果表明,将第31位氨基酸位点Ala突变为Phe能够显著的提高Umxyn10A的热稳定性。  相似文献   

5.
[目的]以糖苷水解酶11家族耐热木聚糖酶EvXyn11TS为研究对象,定点突变其编码基因Syxyn11,揭示EvXyn11TS耐热性与其N端二硫键的相关性.[方法]对不同来源的、与EvXyn11TS一级结构相似度较高的若干11家族木聚糖酶进行多序列同源比对,发现只有耐热的EvXyn11TS在其N端存在一个二硫键(Cys5-Cys32);运用分子动力学模拟预测该N端二硫键存在与否对木聚糖酶热稳定性的影响.以人工合成的Syxyn11为母本,采用PCR技术将其编码Cys5的密码子TGT突变为编码Thr5的ACT,构建去除了N端二硫键的突变酶(EvXyn11M)的编码基因Syxyn11M;分别将Syxyn11和Syxyn11M在毕赤酵母GS115中进行表达,并分析表达产物EvXyn 11 TS和EvXyn11M的温度和pH特性.[结果]酶学性质研究结果表明:EvXyn11M的最适温度Topt由突变前的85℃降至70℃;EvXyn11TS在90℃的半衰期t1/290为32 min,而EvXyn11M在70℃的半衰期t1/270仅为8.0 min.[结论]运用分子动力学模拟预测了N端二硫键对EvXyn11TS耐热性的重要作用,并通过定点突变验证之,为其它与耐热EvXyn11TS一级结构相似的、11家族常温高比活性木聚糖酶的耐热性改造提供了新的技术策略.  相似文献   

6.
转氨酶(ω-transaminase,ω-TA)作为一种天然的生物催化剂,在手性胺类化合物的合成中具有较好的应用前景。但ω-TA在催化非天然底物的反应过程中存在稳定性差、活性低的缺陷,大大限制了ω-TA的应用。为改善此缺陷,针对来源于土曲霉(Aspergillus terreus)的(R)-ω-TA(At TA),采用基于分子动力学模拟的计算机辅助设计与随机突变、组合突变相结合的策略进行酶的热稳定性改造,获得了热稳定性与活性同步提高的最佳突变酶At TA-E104D/A246V/R266Q (M3)。与At TA野生酶(wild-type, WT)相比,M3的半衰期t1/2 (35℃)由17.8 min提升至102.7 min,提升了4.8倍,半失活温度T5010比WT (38.1℃)提高2.2℃。最佳突变酶M3对丙酮酸和1-(R)-苯乙胺的催化效率分别是野生酶的1.59倍和1.56倍。分子动力学模拟与分子对接结果表明,分子内氢键与疏水相互作用的增加所导致α-螺旋的加固稳定是酶热稳定性提升的主要原因;底物分子与结合口袋氨...  相似文献   

7.
对来源于Streptomycesolivaceoviridis的高比活木聚糖酶XYNB进行同源建模,并结合嗜热木聚糖酶氮末端芳香族氨基酸疏水作用的结构分析,设计了XYNB的T11Y定点突变,观察XYNB分子中折叠股B1和B2的疏水作用对酶的热稳定性的影响。将突变酶XYNB′在毕赤酵母中表达,表达的XYNB′经纯化后与原酶XYNB(同样经毕赤酵母表达后纯化)进行酶学性质比较,结果表明,XYNB′的耐热性比XYNB有明显的提高,但最适温度与原酶一样为60℃。另外,XYNB′的最适pH、Km值及比活性均有一定的改变。实验证实了木聚糖酶XYNB的氮端芳香族氨基酸之间的疏水相互作用与其热稳定性相关,为进一步的结构与功能研究提供了优良的基因材料。  相似文献   

8.
【背景】作为降解木聚糖的核心酶种,木聚糖酶可以有效促进木质纤维素的消化水解,在动物养殖领域应用广泛。来源于嗜热细菌贝斯其热解纤维素菌(Caldicellulosiruptorbescii)的GH10家族木聚糖酶Cb Xyn10C最适温度为85℃,在80℃条件下具有良好的热稳定性,具有饲料工业应用潜力。【目的】为满足饲料制粒尤其是水产饲料加工过程的工艺要求,进一步提高木聚糖酶Cb Xyn10C的热稳定性并阐明其耐热机理。【方法】以Cb Xyn10C晶体结构为基础,采用刚性氨基酸引入、疏水作用网络重排2种策略对其热稳定性进行理性设计,获得在100℃条件下比活提高的单点突变体后,通过有益突变位点叠加策略进一步提升酶的热稳定性,最后采用分子动力学模拟技术分析其热稳定性提高的分子机制。【结果】共获得了4个稳定性提高的单点突变体A45P、T69P、F309V和A325P,其中突变体A45P效果最优。随着在A45P基础上另外3个突变位点的叠加,酶的热稳定性在不损失酶活的前提下得到了逐步提升。获得的四点突变体A45P/F309V/A325P/T69P的耐热性最好,其最适反应温度和熔解温度Tm值较野生型...  相似文献   

9.
定点突变提高里氏木霉木聚糖酶 (XYN II) 的稳定性   总被引:2,自引:0,他引:2  
通过定点突变的方法,在来源于里氏木霉Trichderma reesei的木聚糖酶XYN II的N-末端两个β折叠片层间添加二硫键,以提高木聚糖酶的稳定性。原酶XYN-OU和突变酶XYN-HA12 (T2C、T28C和S156F) 分别在毕赤酵母中分泌表达,突变酶与原酶纯化后进行酶学性质比较。结果表明:突变酶最适反应温度由50℃提高到60℃;在70℃的半衰期由1 min提高到14 min;最适反应pH为5.0,与原酶保持一致,但是在50℃、30 min条件下的pH稳定范围由4.0~9.0扩展到3.0~10.0。对木聚糖酶分子改良的结果反映出在β片层间添加二硫键可以有效改善酶在较高温度下三维结构的刚性,提高热稳定性。  相似文献   

10.
来源于黏细菌Myxococcus sp.V11的海藻糖合酶(trehalose synthase, EC 2.4.1.245)TreS II可通过转糖苷作用将麦芽糖转化成为海藻糖,在酶法生产海藻糖上显示出一定的应用潜力,但TreS II对热敏感,在60℃保温3h,酶活性丧失,限制了其应用范围.目的:拟探索TreS II影响热稳定性的氨基酸残基构成,通过对可能的氨基酸位点进行定点突变,以期获得耐热性的突变子,扩大TreS II应用范围.方法: 通过PCR介导的方法对TreS II可能影响到热稳定性的氨基酸Q3,A283,W374,R449和Y537进行定点突变,以野生型重组酶为对照,比较突变型与野生型的最适反应温度和最适反应pH,通过测定不同温度下保存不同时间后的残留酶活,检测突变子的耐热效果.结果: 研究表明突变子Q3D,A283R,W374D,R449Q和Y537H的比酶活与野生型无显著差异,且最适pH 和最适反应温度也未发生改变;A283R,Y537H在60℃条件下,3h后活性剩余68%;Q3D,W374D,R449Q在温度60℃时,3h后活性剩余35%.结论: TreS II分子结构中与金属离子结合的几个氨基酸残基的改变对蛋白质分子的耐热性具有显著影响.  相似文献   

11.
To improve the temperature characteristics of a mesophilic glycoside hydrolase family (GHF) 11 xylanase AoXyn11A from Aspergillus oryzae, both introduction of a disulfide bridge and the substitution of a specific amino acid were carried out by in silico design and site-directed mutagenesis. Based on the analysis of a known crystal structure of thermophilic xylanase TlXynA from Thermomyces lanuginosus, and the alignment of primary structures between AoXyn11A and TlXynA, one mutant AoXyn11AM with a disulfide bridge (Cys108–Cys152) was designed by replacing the Ser108 and Asn152 of AoXyn11A with Cys residues, respectively. Additionally, based on the analysis of amino acid B-factor values, another mutant AoXyn11AM-G22A was predicted by substituting Gly22 of AoXyn11AM (having the maximum B-factor value of 69.25 Å, with the corresponding Ala23 of TlXynA. Thereafter, two mutant xylanase-encoding genes, Aoxyn11A M and Aoxyn11A M-G22A, were constructed by site-directed mutagenesis. Aoxyn11A and two mutant genes were expressed in E. coli BL21(DE3) respectively, and three expressed recombinant xylanases, reAoXyn11A, reAoXyn11AM and reAoXyn11AM-G22A, were purified to homogeneity. The temperature optima of reAoXyn11AM and reAoXyn11AM-G22A were 60 and 65°C, respectively, being 5 and 10°C higher than that of reAoXyn11A. Their thermal inactivation half-lives at 50°C were 1.8- and 8.4-folds longer than that of reAoXyn11A. There were no obvious alterations after mutations in specific activity and enzymatic properties, except for the temperature characteristics.  相似文献   

12.
A full-length cDNA sequence of Aoxyn11A, a mesophilic xylanase-encoding gene from Aspergillus oryzae, was obtained from total RNA, using 3′ and 5′ rapid amplification of cDNA ends methods. The cDNA sequence is 1,086 base pairs in length, containing 5′-untranslated and 3′-untranslated regions and an open reading frame encoding a 20 amino acid (aa) signal peptide, a 24 aa propeptide and a 188 aa mature peptide (designated AoXyn11A). Multiple alignments verified that AoXyn11A belongs to glycoside hydrolase family 11. Its three-dimensional structure was predicted by multiple templates–based homology modeling. In addition, an AoXyn11A-encoding cDNA gene was extracellularly expressed in Pichia pastoris GS115, mediated by the modified pPIC9K vector. One P. pastoris transformant, numbered as GSAorX4-3 and having the highest recombinant AoXyn11A (reAoXyn11A) activity of 98.0 U/ml, was chosen. The reAoXyn11A showed maximum activity at pH 5.5 and 50 °C. It was highly stable at a pH range of 4.0–8.0 and at 40 °C. Its activity was not significantly affected by metal ions that were tested or EDTA, but was strongly inhibited by Mn2+ and Ag+. The K m and V max of the reAoXyn11A were 1.85 mg/ml and 3,018 U/mg, respectively.  相似文献   

13.
A mesophilic Aspergillus oryzae xylanase (AoXyn11A) belongs to glycoside hydrolase family 11. Hydrogen bonds and a disulfide bridge were introduced between the N-terminus extension and the β-sheet A2 of AoXyn11A, which were located in the corresponding region of a hyperthermostable xylanase. The mutants were designated as AoXyn11AC5 and AoXyn11AC5–C32, respectively. The thermostabilities of AoXyn11A and the mutants were assessed by the molecular dynamics simulations. After being incubated at 55 °C for 30 min, AoXyn11AC5–C32 retained 49 % of its original activity, AoXyn11AC5 retained 12 % and AoXyn11A retained 3 %. The interactions between the N-terminus extension and the β-sheet A2 were analyzed in depth: there was enhancement of the interactions between the N-terminus extension and the β-sheet A2 of AoXyn11A that improved its thermostability.  相似文献   

14.
A mesophilic xylanase from Aspergillus oryzae CICC40186 (abbreviated to AoXyn11A) belongs to glycoside hydrolase family 11. The thermostability of AoXyn11A was significantly improved by substituting its N‐terminus with the corresponding region of a hyperthermostable family 11 xylanase, EvXyn11TS. The suitable N‐terminus of AoXyn11A to be replaced was selected by the comparison of B‐factors between AoXyn11A and EvXyn11TS, which were generated and calculated after a 15 ns molecular dynamic (MD) simulation process. Then, the predicted hybrid xylanase (designated AEx11A) was modeled, and subjected to a 2 ns MD simulation process for calculating its total energy value. The N‐terminus substitution was confirmed by comparing the total energy value of AEx11A with that of AoXyn11A. Based on the in silico design, the AEx11A was constructed and expressed in Pichia pastoris GS115. After 72 h of methanol induction, the recombinant AEx11A (reAEx11A) activity reached 82.2 U/mL. The apparent temperature optimum of reAEx11A was 80°C, much higher than that of reAoXyn11A. Its half‐life was 197‐fold longer than that of reAoXyn11A at 70°C. Compared with reAoXyn11A, the reAEx11A displayed a slight alteration in Km but a decrease in Vmax. Biotechnol. Bioeng. 2013; 110: 1028–1038. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
A Bacillus subtilis strain isolated from a hot-spring was shown to produce xylanolytic enzymes. Their associative/synergistic effect was studied using a culture medium with oat spelts xylan as xylanase inducer. Optimal xylanase production of about 12 U ml−1 was achieved at pH 6.0 and 50°C, within 18 h fermentation. At 50°C, xylanase productivity obtained after 11 h in shake-flasks, 96,000 U l−1 h−1, and in reactor, 104,000 U l−1 h−1 was similar. Increasing temperature to 55°C a higher productivity was obtained in the batch reactor 45,000 U l−1 h−1, compared to shake-flask fermentations, 12,000 U l−1 h−1. Optimal xylanolytic activity was reached at 60°C on phosphate buffer, at pH 6.0. The xylanase is thermostable, presenting full stability at 60°C during 3 h. Further increase in the temperature caused a correspondent decrease in the residual activity. At 90°C, 20% relative activity remains after 14 min. Under optimised fermentation conditions, no cellulolytic activity was detected on the extract. Protein disulphide reducing agents, such as DTT, enhanced xylanolytic activity about 2.5-fold. When is used xylan as substrate, xylanase production decreased as function of time in contrast, with trehalose as carbon source, xylanase production in maintained constant for at least 80 h fermentation.  相似文献   

16.
Ammonium (NH4+) and nitrate (NO3) are major inorganic nitrogen (N) sources for plants. When serving as the sole or dominant N supply, NH4+ often causes root inhibition and shoot chlorosis in plants, known as ammonium toxicity. NO3 usually causes no toxicity and can mitigate ammonium toxicity even at low concentrations, referred to as nitrate-dependent alleviation of ammonium toxicity. Our previous studies indicated a NO3 efflux channel SLAH3 is involved in this process. However, whether additional components contribute to NO3-mediated NH4+ detoxification is unknown. Previously, mutations in NO3 transporter NRT1.1 were shown to cause enhanced resistance to high concentrations of NH4+. Whereas, in this study, we found when the high-NH4+ medium was supplemented with low concentrations of NO3, nrt1.1 mutant plants showed hyper-sensitive phenotype instead. Furthermore, mutation in NRT1.1 caused enhanced medium acidification under high-NH4+/low-NO3 condition, suggesting NRT1.1 regulates ammonium toxicity by facilitating H+ uptake. Moreover, NRT1.1 was shown to interact with SLAH3 to form a transporter-channel complex. Interestingly, SLAH3 appeared to affect NO3 influx while NRT1.1 influenced NO3 efflux, suggesting NRT1.1 and SLAH3 regulate each other at protein and/or gene expression levels. Our study thus revealed NRT1.1 and SLAH3 form a functional unit to regulate nitrate-dependent alleviation of ammonium toxicity through regulating NO3 transport and balancing rhizosphere acidification.  相似文献   

17.
单志琼  周峻岗  周宇飞  袁汉英  吕红 《遗传》2012,34(3):356-365
从青海盐碱湖土壤中筛选到25株产碱性木聚糖酶的菌株, 其中编号为QH14的菌株产酶量达648.79 U/mL, 纯化后比活可达1148.56 U/mg。16 SrDNA鉴定表明菌株QH14属于短小芽孢杆菌, 命名为Bacillus sp. QH14。从该菌株的基因组中克隆获得了碱性木聚糖酶编码基因XynQH14, 并在大肠杆菌E.coliBL21(DE3)中获得重组表达。通过Ni-NTA亲和层析分离纯化后的重组QH14木聚糖酶比活达700.47 U/mg。该碱性木聚糖酶的酶促反应最适温度为60℃, 最适pH为9.2; 55℃处理1h仍保持50%的活力; 在pH7.0~11条件下37℃处理酶液24 h后均保持80%以上的活力, 且在pH11缓冲溶液中50℃处理24 h仍保持31.02%的酶活, 显示了该碱性木聚糖酶较好的热稳定性和碱稳定, 提示该碱性木聚糖酶在制浆造纸、纺织等行业的应用潜力。  相似文献   

18.
运用15N稳定性同位素技术,对15N标记的硝酸盐和铵盐在输入小嵩草(Kobresia pygaea C.B.Clarke)草甸11~13个月后的运移规律进行了研究.在经历11~13个月后,进入无机氮库中的15N很少,一般不超过所输入氮素的l%,而较多的1 5N为土壤有机质、土壤微生物和植物所固持.NO3--15N和NH4 -1 5N在小嵩草草甸中的运移规律差异很大.在11、12和13个月后,NO3--15N的总恢复率分别为92.83%、92.64%和79.96%;而NH4 -15N的则分别为49.6%、63.33%和66.22%.两者的差异在土壤有机质、土壤微生物和植物等库之间的分配中更加明显.输入NO3--15N时在11、12个月后植物所固持的15N最多,而土壤微生物和土壤有机质所固持的15N比较接近,而在13个月后,土壤有机质和植物所固持的15N接近,而土壤微生物所固持的15N下降许多;当输入NH4 -15N,土壤有机质所固持的1 5N比植物和土壤微生物所固持的都多,而且植物所固持的15N比较稳定,而土壤微生物所固持的15N则有较大变化.这表明在较长的时间内嵩草草甸对NO3-和NH4 的固持能力是不一样的.  相似文献   

19.
Yeast cytochrome c peroxidase (CCP) efficiently catalyzes the reduction of H2O2 to H2O by ferrocytochrome c in vitro. The physiological function of CCP, a heme peroxidase that is targeted to the mitochondrial intermembrane space of Saccharomyces cerevisiae, is not known. CCP1-null-mutant cells in the W303-1B genetic background (ccp1Δ) grew as well as wild-type cells with glucose, ethanol, glycerol or lactate as carbon sources but with a shorter initial doubling time. Monitoring growth over 10 days demonstrated that CCP1 does not enhance mitochondrial function in unstressed cells. No role for CCP1 was apparent in cells exposed to heat stress under aerobic or anaerobic conditions. However, the detoxification function of CCP protected respiring mitochondria when cells were challenged with H2O2. Transformation of ccp1Δ with ccp1W191F, which encodes the CCPW191F mutant enzyme lacking CCP activity, significantly increased the sensitivity to H2O2 of exponential-phase fermenting cells. In contrast, stationary-phase (7-day) ccp1Δ-ccp1W191F exhibited wild-type tolerance to H2O2, which exceeded that of ccp1Δ. Challenge with H2O2 caused increased CCP, superoxide dismutase and catalase antioxidant enzyme activities (but not glutathione reductase activity) in exponentially growing cells and decreased antioxidant activities in stationary-phase cells. Although unstressed stationary-phase ccp1Δ exhibited the highest catalase and glutathione reductase activities, a greater loss of these antioxidant activities was observed on H2O2 exposure in ccp1Δ than in ccp1Δ-ccp1W191F and wild-type cells. The phenotypic differences reported here between the ccp1Δ and ccp1Δ-ccp1W191F strains lacking CCP activity provide strong evidence that CCP has separate antioxidant and signaling functions in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号