首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Using the near-isogenic lines, the possible location of glucose phosphate isomeras-2 (phosphoglucose isomerase-2) locus (Pgi-2) in relation to photoperiod sensitivity locus (Se-1) and blast resistance locus (Pi-z) was investigated. The recombination frequency data indicate thatPgi-2 locus locates betweenSe-1 andPi-z loci. Furthermore, 15 Indica cultivars possessed two types of glucose phosphate isomerase-2 (GPI-2) isozyme, whereas only one type of GPI-2 isozyme was found in 30 Japonica cultivars.  相似文献   

2.
Rice blast, caused by the fungus Magnaporthe grisea, is a globally important disease of rice that causes annual yield losses. The segregation of genes controlling the virulence of M. grisea on rice was studied to establish the genetic basis of cultivar specificity in the interaction of rice and M. grisea. The segregation of avirulence and virulence was studied in 87 M. grisea F1 progeny isolates from a cross of two isolates, Guy11 and JS153, using resistance-gene-differential rice cultivars. The segregation ratio indicated that avirulence and virulence in the rice cultivars Aichi–asahi and K59, respectively, are controlled by single major genes. Genetic analyses of backcrosses and full-sib crosses in these populations were also performed. The χ2 test of goodness-of-fitness for a 1:1 ratio indicated that one dominant gene controls avirulence in Aichi-asahi and K59 in this population. Based on the resistance reactions of rice differential lines harboring known resistance genes to the parental isolates, two genetically independent avirulence genes, AVR–Pit and AVR–Pia, were identified. Genetic linkage analysis showed that the SSR marker m355–356 is closely linked to AVR–Pit, on the telomere of chromosome 1 at a distance of approximately 2.3 cM. The RAPD marker S487, which was converted to a sequence-characterized amplified region (SCAR) marker, was found to be closely linked to AVR–Pia, on the chromosome 7 telomere at a distance of 3.5 cM. These molecular markers will facilitate the positional cloning of the two AVR genes, and can be applied to molecular-marker-assisted studies of M. grisea populations.  相似文献   

3.
RFLP tagging of a gene for aroma in rice   总被引:24,自引:0,他引:24  
Summary We report here the identification of a DNA marker closely linked to a gene for aroma in rice. The DNA marker was identified by testing 126 mapped rice genomic, cDNA, and oat cDNA, clones as hybridization probes against Southern blots, consisting of DNA from a pair of nearly isogenic lines (NILs) with or without the aroma gene. Chromosomal segments introgressed from the donor genome were distinguished by RFLPs between the NILs. Linkage association of the clone with the gene was verified using an F3 segregating for aroma. Cosegregation of the scented phenotype and donor-derived allele indicated the presence of linkage between the DNA marker and the gene. RFLP analysis showed that the gene is linked to a single-copy DNA clone, RG28, on chromosome 8, at a distance of 4.5 cM. The availability of a linked DNA marker may facilitate early selection for the aroma gene in rice breeding programs.  相似文献   

4.
Summary Co-segregation studies of isozyme markers and male fertility restoration showed that a restorer gene from radish was introduced into rapeseed along with an isozyme marker (Pgi-2). The radish chromosome segment carrying these genes was introgressed into rapeseed through homoeologous recombination, substituting for some of the rapeseed alleles. By crossing heterozygous restored plants to male-sterile lines and to maintainers, tight linkage was found between the restorer gene and the marker. The recombination fraction was estimated at 0.25 ± 0.02%. Although few restored plants lacked the radish isozyme marker, it was still possible to distinguish male-fertile from male-sterile plants by their PGI-2 patterns. Furthermore, homozygous and heterozygous restored plants could be separated by specific PGI-2 phenotypes. Thus, the Pgi-2 marker is now currently used in restorer breeding programs.  相似文献   

5.
Significant segregation of spikelet fertility occurred in an F2 population derived from a spikelet fertility-normal F1 hybrid produced by a cross between Palawan, a japonica variety, and IR42, an indica variety. To identify factors controlling the fertility segregation, we used 104 RFLP markers covering all 12 rice chromosomes to investigate the association of spikelet fertility and marker segregation. We found that the segregation of two sets of gene pairs was significantly (P < 0.001) associated with fertility segregation. The first pair of genes was linked to RFLP marker RG778 on chromosome 12 and RFLP markers RG690/RG369 on chromosome 1. A significant reduction in fertility was observed when the plants were homozygote at RG778 with the indica allele as well as homozygote at RG690/RG369 with the japonica allele. The second pair of genes was linked to RG218 on chromosome 12 and RG650 on chromosome 7, respectively. The recombinant homozygote at these two loci showed a significant reduction on spikelet fertility. The non-allelic interaction effect was further modified by a gene linked to RG778, resulting in even lower fertility. The results of this study provides the first evidence of chromosomal localization of sporophytic sterility genes whose interaction can result in a reduction of spikelet fertility in the F2 derived from fertility-normal F1.  相似文献   

6.
Tagging genes for blast resistance in rice via linkage to RFLP markers   总被引:24,自引:0,他引:24  
Summary Both Pi-2(t) and Pi-4(t) genes of rice confer complete resistance to the blast fungal pathogen Pyricularia oryzae Cav. As economically important plant genes, they have been recently characterized phenotypically, yet nothing is known about their classical linkage associations and gene products. We report here the isolation of DNA markers closely linked to these blast resistance genes in rice. The DNA markers were identified by testing 142 mapped rice genomic clones as hybridization probes against Southern blots, consisting of DNA from pairs of nearly isogenic lines (NILs) with or without the target genes. Chromosomal segments introgressed from donor genomes were distinguished by restriction fragment length polymorphisms (RFLPs) between the NILs. Linkage associations of the clones with Pi-2(t) and Pi4(t) were verified using F3 segregating populations of known blast reaction. Cosegregation of the resistant genotype and donor-derived allele indicated the presence of linkage between the DNA marker and a blast resistance gene. RFLP analysis showed that Pi-2(t) is closely linked to a single-copy DNA clone RG64 on chromosome 6, with a distance of 2.8+1.4(SE) cMorgans. Another blast resistance gene, Pi-4(t), is 15.3+4.2(SE) cMorgans away from a DNA clone RG869 on chromosome 12. These chromosomal regions can now be examined with additional markers to define the precise locations of Pi-2(t) and Pi-4(t). Tightly linked DNA markers may facilitate early selection for blast resistance genes in breeding programs. These markers may also be useful to map new genes for resistance to blast isolates. They may ultimately lead to the cloning of those genes via chromosome walking. The gene tagging approach demonstrated in this paper may apply to other genes of interest for both monogenic and polygenic traits.  相似文献   

7.
Molecular mapping of rice chromosomes   总被引:108,自引:0,他引:108  
Summary We report the construction of an RFLP genetic map of rice (Oryza sativa) chromosomes. The map is comprised of 135 loci corresponding to clones selected from a PstI genomic library. This molecular map covers 1,389 cM of the rice genome and exceeds the current classical maps by more than 20%. The map was generated from F2 segregation data (50 individuals) from a cross between an indica and javanica rice cultivar. Primary trisomics were used to assign linkage groups to each of the 12 rice chromosomes. Seventy-eight percent of the clones assayed revealed RFLPs between the two parental cultivars, indicating that rice contains a significant amount of RFLP variation. Strong correlations between size of hybridizing restriction fragments and level of polymorphism indicate that a significant proportion of the RFLPs in rice are generated by insertions/delections. This conclusion is supported by the occurrence of null alleles for some clones (presumably created by insertion or deletion events). One clone, RG229, hybridized to sequences in both the indica and javanica genomes, which have apparently transposed since the divergence of the two cultivars from their last common ancestor, providing evidence for sequence movement in rice. As a by product of this mapping project, we have discovered that rice DNA is less C-methylated than tomato or maize DNA. Our results also suggest the notion that a large fraction of the rice genome (approximately 50%) is single copy.  相似文献   

8.
The Chinese rice cultivar Duokang #1 carries a single dominant gene Gm-6(t) that confers resistance to the four biotypes of Asian rice gall midge (Orseolia oryzae Wood-Mason) known in China. Bulked segregant analysis was performed on progeny of a cross between Duokang #1 and the gall midge-susceptible cultivar Feng Yin Zhan using the RAPD method. The RAPD marker OPM06(1400) amplified a locus linked to Gm-6(t). The locus was subsequently mapped to rice chromosome 4 in a region flanked by cloned RFLP markers RG214 and RG163. Fine mapping of Gm-6(t) revealed that markers RG214 and RG476 flanked the gene at distances of 1.0 and 2.3 cM, respectively. Another gall midge resistance gene, Gm-2, mapped previously to chromosome 4, is located about 16 cM from Gm-6(t), to judge by data from a segregating population derived from a cross between Duokang #1 and the Indian cultivar Phalguna that carries Gm-2. We developed a PCR-based marker-assisted selection kit for transfer of the Gm-6(t) gene into Ming Hui 63 and IR50404, two parental lines commonly used in hybrid rice production in China. The kit contains PCR primer pairs based on the terminal sequences of the RG214 and RG476 clones. Polymorphism between Duokang #1 and the hybrid parental lines was found at these markers after digestion of the PCR products with specific restriction endonucleases. The kit will accelerate introduction of gall midge resistance into hybrid rice in China. Received: 18 May 2000 / Accepted: 9 March 2001  相似文献   

9.
The genomic DNA clone RG28, linked to the major fragrance gene of rice (fgr), was assessed for polymorphism in order to produce a PCR-based marker for fragrance. A small mono-nucleotide repeat, that was polymorphic between a pair of fragrant and non-fragrant cultivars, was identified and developed into a co-dominant PCR-based marker. The polymorphism-information-content determinations for three microsatellite markers, that have been genetically mapped near RG28, are also presented. These PCR-based markers will be highly useful in distinguishing fragrance-producing alleles from non-fragrance-producing alleles at the fgr locus. Received: 19 October 1999 / Accepted: 16 December 1999  相似文献   

10.
Two dominant genes conferring complete resistance to specific isolates of the rice blast fungus, Pyricularia grisea Sacc., were located on the molecular map of rice in this study. Pi-l(t) is a blast resistance gene derived from the cultivar LAC23. Its map location was determined using a pair of nearly isogenic lines (NILs) and a B6F3 segregating population from which the isoline was derived. RFLP analysis showed that Pi-l(t) is located near the end of chromosome 11, linked to RZ536 at a distance of 14.0±4.5 centiMorgans (cM). A second gene, derived from the cultivar Apura, was mapped using a rice doubled-haploid (DH) population. This gene was located on chromosome 12, flanked by RG457 and RG869, at a distance of 13.5+-4.3 cM and 17.7+-4.5 cM, respectively. The newly mapped gene on chromosome 12 may be allelic or closely linked toPi-ta. (=Pi-4(t)), a gene derived from Tetep that was previously reported to be linked to RG869 at a distance of 15.4±4.7 cM. The usefulness of markers linked to blast resistance genes will be discussed in the context of breeding for durable blast resistance.  相似文献   

11.
Summary Avocado (Persea americana) cultivars were assayed for phosphoglucose isomerase (PGI) isozymes using starch gel electrophoresis. Three PGI genes were identified: one monomorphic locus, Pgi-I, coding for the plastid isozyme and two independently assorting loci, Pgi-2 and Pgi-3, coding for the cytosolic isozymes. The genetic analysis was based on comparisons of PGI zymograms from somatic and pollen tissue and on Mendelian analysis of progeny from selfed trees. The isozymic variability for PGI can be used for cultivar identification and for differentiating between hybrid and selfed progeny in avocado breeding.  相似文献   

12.
The chalcone synthase is a key enzyme that catalyses the first dedicated reaction of the flavonoid pathway in higher plants. The chs gene and its protein product in rice has been investigated. The presence of a chalcone synthase (CHS) protein in rice seedlings and its developmental stage-specific expression has been demonstrated by western analysis. The chalcone synthase of rice was found to be immunologically similar to that of maize. A rice cDNA clone, Os-chs cDNA, encoding chalcone synthase, isolated from a leaf cDNA library of an indica rice variety Purpleputtu has been mapped to the centromeric region of chromosome 11 of rice. It was mapped between RFLP markers RG2 and RG103. RG2 is the nearest RFLP marker located at a genetic distance of 3.3 cM. Some segments of chromosome 11 of rice including chs locus are conserved on chromosome 4 of maize. The markers, including chs locus on chromosome 11 of rice are located, though not in the same order, on chromosome 4 of maize. Genetic analysis of purple pigmentation in two rice lines, Abhaya and Shyamala, used in the present mapping studies, indicated the involvement of three genes, one of which has been identified as a dominant inhibitor of leaf pigmentation. The Os-chs cDNA shows extensive sequence homology, both for DNA and protein (deduced), to that of maize, barley and also to different monocots and dicots.  相似文献   

13.
RFLP tagging of a new semidwarfing gene in rice   总被引:6,自引:0,他引:6  
A new rice semidwarfing gene which is not allelic tosd1, temporarily designated assdg, might be of use as a new source of semidwarfism in rice breeding programs. We report here the identification of a DNA marker closely linked to this gene. The DNA marker was identified by testing 120 mapped rice RFLP makers as hybridization probes for Southern analysis of a pair of nearly isogenic lines with or withoutsdg. Linkage association of the marker with the gene was verified using a F2 population segregating for semidwarfism. RFLP analysis showed thatsdg is closely linked to a single-copy DNA clone RZ182 on chromosome 5, with a distance of 4.3 centiMorgans between them. This marker may facilitate early selection for the semidwarfing gene in rice breeding programs  相似文献   

14.
The genomic clone RG64, which is tightly linked to the blast resistance gene Pi-2(t) in rice, provides means to perform marker-aided selection in a rice breeding program. The objective of this study was to investigate the possibility of generating a polymerase chain reaction (PCR)-based polymorphic marker that can distinguish the blast resistant gene, Pi-2(t), and susceptible genotypes within cultivated rice. RG64 was sequenced, and the sequence data was used to design pairs of specific primers for (PCR) amplification of genomic DNA from rice varieties differing in their blast disease responsiveness. The amplified products, known as sequenced-tagged-sites (STSs), were not polymorphic between the three varieties examined. However, cleavage of the amplified products with the restriction enzyme HaeIII generated a polymorphic fragment, known as specific amplicon polymorphism (SAP), between the resistant and the susceptible genotypes. To examine the power of the identified SAP marker in predicting the genotype of the Pi-2 (t) locus, we determined the genotypes of the F2 individuals at this locus by performing progeny testing for the disease response in the F3 generation. The results indicated an accuracy of more than 95% in identifying the resistant plants, which was similar to that using RG64 as the hybridization probe. The identification of the resistant homozygous plants increased to 100% when the markers flanking the genes were considered simultaneously. These results demonstrate the utility of SAP markers as simple and yet reliable landmarks for use in marker-assisted selection and breeding within cultivated rice.  相似文献   

15.
Markers for selection of the rice Xa21 disease resistance gene   总被引:8,自引:0,他引:8  
Six molecular markers were mapped to a 7.4-cM region of rice chromosome 11 containing the Xa21 gene, which confers resistance to the pathogen Xanthomonas oryzae pv oryzae. Three markers, RG103, 248 and 818, co-segregated with Xa21 in a population of 1141 plants. Multiple copies of all marker loci were present within the region that was introgressed from Oryza longistaminata into O. sativa. The marker loci were cloned and primers were designed that defined sequence-tagged sites. Physical mapping of the three tightly linked central markers revealed that RG103, the marker that hybridizes to the Xa21 gene, resides on a separate DNA fragment from the other two markers.Disclaimer: Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

16.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

17.
Inheritance of partial resistance to powdery mildew in spring wheat   总被引:7,自引:0,他引:7  
Summary Four spring wheat (Triticum aestivum L.) cultivars exhibiting partial resistance to powdery mildew induced by Erysiphe graminis f.sp. tritici were crossed to a common susceptible cultivar to study the inheritance of resistance. The genetic parameters contributing to resistance were estimated by generation means analyses. Additive gene action was the most important genetic component of variation among generation means in all four crosses. Additive by additive effects were significant in one cross and both additive by additive and additive by dominance effects were significant in another. Dominance effects were not significant. The F2/F3 correlations in three crosses ranged from 0.27 to 0.43. Three additional crosses among resistant cultivars were employed to study the effectiveness of selection in improving resistance. By selecting the most resistant plants from the F2 and evaluating the progenies in the F4, increases in resistance ranging from 21% to 31% were obtained. In all crosses, there was transgressive segregation in both directions indicating that the genes conferring resistance to these cultivars differ and exhibit additive effects.  相似文献   

18.
一个新的水稻迟熟性基因的遗传分析和分子标记定位   总被引:9,自引:1,他引:8  
中籼迟熟水稻品系8987含未知的长生育期基因,在杂交水稻育种中有重要的利用价值,应用该品系与4个不同生态类型的水稻品种杂交,对其F1和F2群体进行生育期调查和遗传分析,确认8987的长生育期受1对隐性主效基因控制。以(8987X地谷)F2群体为基础,应用RFLP和微卫星标记结合群分法,发现第7染色体的RFLP标记C213与该基因连锁;进一步应用F2分离群体将该基因定位于第7染色体上,暂定名为lf-3。此基因的发现和定位将有助于分子标记辅助选择和杂交水稻的改良。  相似文献   

19.
Pi-z is a disease resistance gene that has been effectively used to combat a broad-spectrum of races of the rice blast fungus Magnaporthe grisea. Although DNA markers have been reported for selection of the Pi2(t) and Pi-z resistance genes at the Pi-z locus, markers that are more tightly linked to the Pi-z locus would benefit rapid and effective cultivar development. Analysis of the publicly available genome sequence of Nipponbare near the Pi-z locus revealed numerous SSRs that could be converted into markers. Three SSRs on rice PAC AP005659 were found to be very tightly linked to the Pi-z locus, with one marker, AP5659-3, co-segregating with the Pi-z resistance reaction. The Pi-z factor conferring resistance to two races of blast was mapped to a 57 kb region on the physical map of Nipponbare in a location where the Pi2(t) gene was physically mapped. Two SSR marker haplotypes were unique for cultivars carrying the Pi-z gene, which indicates these markers are useful for selection of resistance genes at the Pi-z locus in rice germplasm.  相似文献   

20.
We have developed an RFLP framework map with 146 RFLP markers based on a doubled haploid population derived from a cross between an indica variety IR64 and a japonica variety Azucena. The population carries 50.2% of IR64 loci and 49.8% of Azucena loci, indicating an equal amount of genetic materials from each parent has been transmitted to the progenies through anther culture. However, some markers show segregation distortion. These distorted marker loci are located on 10 chromosomal segments. Using this map we were able to place 8 isozymes, 14 RAPDs, 12 cloned genes, 1 gene for brown planthopper (BPH) resistance, and 12 QTLs for grain length, grain width and length/width ratio onto rice chromosomes. The major gene for BPH resistance was mapped on chromosome 12 near RG463 and isozyme Sdh-1. Most of the QTLs identified for the three grain characters were closely linked on chromosomes 1, 2, 3 and 10. We concluded that the RFLP framework map presented here will be useful for mapping other genes segregating in this doubled haploid population. Thus rapid generation of doubled haploid lines and their unbiased segregation make it very attractive for gene mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号