首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
 Ten yeast artificial chromosomes (YACs) spanning the Gm2 locus have been isolated by screening high-density filters containing a total of approximately 7000 YAC (representing six genome equivalents) clones derived from a japonica rice, Nipponbare. The screening was done with five RFLP markers flanking a gall midge resistance gene, Gm2, which was previously mapped onto chromosome 4 of rice. This gene confers resistance to biotype 1 and 2 of gall midge (Orseolia oryzae), a major insect pest of rice in South and Southeast Asia. The RFLP markers RG214, RG329 and F8 hybridized with YAC Y2165. Two overlapping YAC clones (Y5212 and Y2165) were identified by Southern hybridization, with Gm2-flanking RFLP markers, and their inserts isolated. The purified YACs and RFLP markers flanking Gm2 were labeled and physically mapped by the fluorescence in situ hybridization (FISH) technique. All of them mapped to the long arm of chromosome 4 of the resistant variety of rice, ‘Phalguna’, confirming the previous RFLP mapping data. Received: 15 December 1997 / Accepted: 5 March 1998  相似文献   

2.
3.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

4.
Summary With the help of a cDNA probe for a chalcone synthase gene of Petroselinum a cDNA clone for a chalcone synthase gene of Petunia hybrida could be identified. The homologous cDNA allowed the cloning of two genomic EcoRI fragments from Petunia hybrida containing complete chalcone synthase genes. It could be demonstrated that the genes on the two fragments are different and are not allelic but members of a gene family. The two genes are found in a variety of different Petunia lines including in the two conditional mutants affected in chalcone synthase expression in floral buds, White Joy and Red Star. The structure of the two chs genes from Petunia is compared to the chs gene from Antirrhinum majus.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

5.
Genetic and physical mapping of telomeres and macrosatellites of rice   总被引:5,自引:0,他引:5  
Telomeres and telomere-associated satellites of rice were genetically and physically analyzed by pulsed-field gel electrophoresis (PFGE) using Arabidopsis telomeric DNA and rice satellite sequences as probes. We demonstrate that Arabidopsis telomeric sequences hybridize to rice telomeres under the conditions of high stringency. Using the Arabidopsis probe, multiple, discrete telomeric fragments could be identified on pulsed-field gel blots of rice DNAs digested with rare-cutting restriction enzymes. Most of the telomeric bands larger than 300 kb are physically linked with satellite bands as revealed by PFGE. Some of the telomeric and satellite bands segregate in a Mendelian fashion and are highly reproducible. Three such telomeric bands have been mapped to the distal ends of RFLP linkage groups: Telsm-1 on chromosome 8, Telsa-1 on chromosome 9 and Telsm-3 on chromosome 11. One segregating satellite band was mapped to an internal region of chromosome 10. Telomeric fragments were shown not only to be genetically linked to but also physically linked (based on PFGE) to the terminal RFLP markers. The physical distance from telomeric sequences to a distal RFLP marker, r45s gene, on chromosome 9, is 200 kb while the distance from telomeric sequences to RG98, a terminal RFLP marker on chromosome 11, is 260 kb. Physical maps of the telomere regions of chromosome 9 and chromosome 11 are presented.  相似文献   

6.
 The chromosomal position of Starch Branching Enzyme III (SBEIII) was determined via linkage to RFLP markers on an existing molecular map of rice (Oryza sativa L.). A cDNA of 890 bp was generated using specific PCR primers designed from available SBEIII sequence data and used as a probe in Southern analysis. The SBEIII cDNA hybridized to multiple restriction fragments, but these fragments mapped to a single locus on rice chromosome 2, flanked by CDO718 and RG157. The detection of a multiple-copy hybridization pattern suggested the possibility of a tandemly duplicated gene at this locus. The map location of orthologous SBE genes in maize, wheat, and oat were predicted based on previously published genetic studies and comparative maps of the grass family. Received : 5 August 1996 / Accepted : 13 September 1996  相似文献   

7.
8.
The fungal disease resistance locus Alternaria stem canker (Asc) in tomato has been suggested to encode the enzyme aspartate carbamoyltransferase (AC Tase). To test this hypothesis a segment of the tomato ACTase gene was amplified by the polymerase chain reaction (PCR) using degenerate primers. The PCR product obtained was subsequently used to isolate an ACTase cDNA clone. Restriction fragment length polymorphism (RFLP) linkage analysis showed that the ACTase gene and the Asc locus do not cosegregate. RFLP mapping positioned the ACTase gene on chromosome 11, while the Asc locus is located on chromosome 3. These results exclude the possibility that the ACTase protein is encoded by the Asc locus.  相似文献   

9.
RFLP tagging of a gene for aroma in rice   总被引:24,自引:0,他引:24  
Summary We report here the identification of a DNA marker closely linked to a gene for aroma in rice. The DNA marker was identified by testing 126 mapped rice genomic, cDNA, and oat cDNA, clones as hybridization probes against Southern blots, consisting of DNA from a pair of nearly isogenic lines (NILs) with or without the aroma gene. Chromosomal segments introgressed from the donor genome were distinguished by RFLPs between the NILs. Linkage association of the clone with the gene was verified using an F3 segregating for aroma. Cosegregation of the scented phenotype and donor-derived allele indicated the presence of linkage between the DNA marker and the gene. RFLP analysis showed that the gene is linked to a single-copy DNA clone, RG28, on chromosome 8, at a distance of 4.5 cM. The availability of a linked DNA marker may facilitate early selection for the aroma gene in rice breeding programs.  相似文献   

10.
Summary Nearly isogenic lines (NILs) of rice (Oryza sativa) differing at a locus conferring resistance to the pathogen Xanthomonas oryzae pv. oryzae were surveyed with 123 DNA markers and 985 random primers using restriction fragment length plymorphism (RFLP) and random amplified polymorphic DNA (RAPD) analysis. One chromosome 11 marker (RG103) detected polymorphism between the NILs that cosegregated with Xa21. All other chromosome 11 DNA markers tested were monomorphic between the NILs, localizing the Xa21 introgressed region to an 8.3 cM interval on chromosome 11. Furthermore, we identified two polymerase chain reaction (PCR) products (RAPD2148 and RAPD818) that detected polymorphisms between the NILs. Genomic sequences hybridizing with RAPD818, RAPD248 and RG103 were duplicated specifically in the Xa21 NIL. All three markers cosegregated with the resistance locus, Xa21, in a F2 population of 386 progeny. Based on the frequency with which we recovered polymorphic Xa21-linked markers, we estimated the physical size of the introgressed region to be approximately 800 kb. This estimation was supported by physical mapping (using pulsed field gel electrophoresis) of the sequences hybridizing with the three Xa21-linked DNA markers. The results showed that the three Xa21-linked markers are physically close to each other, with one copy of the RAPD818 sequences located within 60 kb of RAPD248 and the other copy within 270 kb of RG103. None of the enzymes tested generated a DNA fragment that hybridized with all three of the markers indicating that the introgressed region containing the resistance locus Xa21 is probably larger than 270 kb.  相似文献   

11.
The Chinese rice cultivar Duokang #1 carries a single dominant gene Gm-6(t) that confers resistance to the four biotypes of Asian rice gall midge (Orseolia oryzae Wood-Mason) known in China. Bulked segregant analysis was performed on progeny of a cross between Duokang #1 and the gall midge-susceptible cultivar Feng Yin Zhan using the RAPD method. The RAPD marker OPM06(1400) amplified a locus linked to Gm-6(t). The locus was subsequently mapped to rice chromosome 4 in a region flanked by cloned RFLP markers RG214 and RG163. Fine mapping of Gm-6(t) revealed that markers RG214 and RG476 flanked the gene at distances of 1.0 and 2.3 cM, respectively. Another gall midge resistance gene, Gm-2, mapped previously to chromosome 4, is located about 16 cM from Gm-6(t), to judge by data from a segregating population derived from a cross between Duokang #1 and the Indian cultivar Phalguna that carries Gm-2. We developed a PCR-based marker-assisted selection kit for transfer of the Gm-6(t) gene into Ming Hui 63 and IR50404, two parental lines commonly used in hybrid rice production in China. The kit contains PCR primer pairs based on the terminal sequences of the RG214 and RG476 clones. Polymorphism between Duokang #1 and the hybrid parental lines was found at these markers after digestion of the PCR products with specific restriction endonucleases. The kit will accelerate introduction of gall midge resistance into hybrid rice in China. Received: 18 May 2000 / Accepted: 9 March 2001  相似文献   

12.
In the ornamental cut flower plant Gerbera hybrida the spatial distribution of regulatory molecules characteristic of differentiation of the composite inflorescence is visualized as the various patterns of anthocyanin pigmentation of different varieties. In order to identify genes that the plant can regulate according to these anatomical patterns, we have analysed gene expression affecting two enzymatic steps, chalcone synthase (CHS) and dihydroflavonol-4-reductase (DFR), in five gerbera varieties with spatially restricted anthocyanin pigmentation patterns. The dfr expression profiles vary at the levels of floral organ, flower type and region within corolla during inflorescence development according to the anthocyanin pigmentation of the cultivars. In contrast, chs expression, although regulated in a tissue-specific manner during inflorescence development, varies only occasionally. The variation in the dfr expression profiles between the varieties reveals spatially specific gene regulation that senses the differentiation events characteristic of the composite inflorescence.  相似文献   

13.
 Complementary recessive genes hwd1 and hwd2 controlling hybrid breakdown (weakness of F2 and later generations) were mapped in rice using RFLP markers. These genes produce a plant that is shorter and has fewer tillers than normal plants when the two loci have only one or no dominant allele at both loci. A cultivar with two dominant alleles at the hwd1 locus and a cultivar with two dominant alleles at the hwd2 locus were crossed with a double recessive tester line. Linkage analysis was carried out for each gene independently in two F2 populations derived from these crosses. hwd1 was mapped on the distal region of rice genetic linkage map for chromosome 10, flanked by RFLP markers C701 and R2309 at a distance of 0.9 centiMorgans (cM) and 0.6 cM, respectively. hwd2 was mapped in the central region of rice genetic linkage map for chromosome 7, tightly linked with 4 RFLP markers without detectable recombination. The usefulness of RFLP mapping and map information for the genes controlling reproductive barriers are discussed in the context of breeding using diverse rice germplasm, especially gene introduction by marker-aided selection.  相似文献   

14.
cDNA probes encoding the barley endosperm ADP-glucose pyrophosphorylase (AGP) small subunit (bepsF2), large subunit (bepl10), and leaf AGP large subunit (blpl) were hybridized with barley genomic DNA blots to determine copy number and polymorphism. Probes showing polymorphism were mapped on a barley RFLP map. Probes that were not polymorphic were assigned to chromosome arms using wheat-barley telosomic addition lines. The data suggested the presence of a single-copy gene corresponding to each of the cDNA probes. In addition to the major bands, several weaker cross-hybridizing bands indicated the presence of other, related sequences. The weaker bands were specific to each probe and were not due to cross-hybridization with the other probes examined here. The endosperm AGP small subunit (bepsF2) majorband locus was associated with chromosome 1P and designated Aga1. The endosperm AGP large subunit (bepl10) major-band locus was mapped to chromosome 5M and designated Aga7. The endosperm AGP large-subunit minor bands were not mapped. The leaf AGP large-subunit major band was associated with chromosome 7M and designated Aga5. One of the leaf AGP large-subunit minor bands was mapped to chromosome 5P and designated Aga6. A clone for the wheat endosperm AGP large-subunit (pAga7) hybridized to the same barley genomic DNA bands as the corresponding barley probe indicating a high degree of identity between the two probes.  相似文献   

15.
A study was initiated to determine the number, chromosomal location, and magnitude of effect of QTL (quantitative trait loci or locus depending on context) controlling protein and starch concentration in the maize (Zea mays L.) kernel. Restriction fragment length polymorphism (RFLP) analysis was performed on 100 F3 families derived from a cross of two strains, Illinois High Protein (IHP), X Illinois Low Protein (ILP), which had been divergently selected for protein concentration for 76 generations as part of the Illinois Long Term Selection Experiment. These families were analyzed for kernel protein and starch in replicated field trials during 1990 and 1991. A series of 90 genomic and cDNA clones distributed throughout the maize genome were chosen for their ability to detect RFLP between IHP and ILP. These clones were hybridized with DNA extracted from the 100 F3 families, revealing 100 polymorphic loci. Single factor analysis of variance revealed significant QTL associations of many loci with both protein and starch concentration (P < 0.05 level). Twenty-two loci distributed on 10 chromosome arms were significantly associated with protein concentration, 19 loci on 9 chromosome arms were significantly associated with starch concentration. Sixteen of these loci were significant for both protein and starch concentration. Clusters of 3 or more significant loci were detected on chromosome arms 3L, 5S, and 7L for protein concentration, suggesting the presence of QTL with large effects at these locations. A QTL with large additive effects on protein and starch concentration was detected on chromosome arm 3L. RFLP alleles at this QTL were found to be linked with RFLP alleles at the Shrunken-2 (Sh2) locus, a structural gene encoding the major subunit of the starch synthetic enzyme ADP-glucose pyrophosphorylase. A multiple linear regression model consisting of 6 significant RFLP loci on different chromosomes explained over 64 % of the total variation for kernel protein concentration. Similar results were detected for starch concentration. Thus, several chromosomal regions with large effects may be responsible for a significant portion of the changes in kernel protein and starch concentration in the Illinois Long Term Selection Experiment.  相似文献   

16.
Suppression of gene expression using antisense technology has been successful in various applications. In this paper we report differential inhibition of gene expression of the chalcone synthase (chs) gene superfamily members in transgenic Gerbera hybrida (Asteraceae) plants. We have transformed two different cDNAs of the chs gene family, gchs 1 [4] and gchs2, in antisense orientation under control of the CaMV 35S promoter into gerbera. Gchs1 codes for an enzyme with chalcone synthase activity while gchs2 is a more diverged member of the gene family having distinct structure and expression pattern. Furthermore, gchs2 is evidently not involved in anthocyanin synthesis and encodes an enzyme with novel catalytic properties. In both cases effective blocking of the resident sense gene expression was detected. In addition, the transformation affected differentially the expression of other members of the chs gene family. The degree of inhibition appeared to depend on the sequence homology between the antisense and the target genes. In the unevenly coloured inflorescences detected among anti-gchs1 transformants during their growth, relaxation of the antisense effect was here shown to start from the most distant member of the gene family, further demonstrating the influence of sequence homology in the stability of antisense inhibition.  相似文献   

17.
18.
Recent studies on chalcone synthase (CHS) and the related stilbene synthase (STS) suggest that the structure of chs-like genes in plants has evolved into different forms, whose members have both different regulation and capacity to code for different but related enzymatic activities. We have studied the diversity of chs-like genes by analysing the structure, expression patterns and catalytic properties of the corresponding enzymes of three genes that are active during corolla development in Gerbera hybrida. The expression patterns demonstrate that chs-like genes are representatives of three distinct genetic programmes that are active during organ differentiation in gerbera. Gchs1 and gchs3 code for typical CHS enzymes, and their gene expression pattern temporally correlates with flavonol (gchs1, gchs3) and anthocyanin (gchs1) synthesis during corolla development. Gchs2 is different. The expression pattern does not correlate with the pigmentation pattern, the amino acid sequence deviates considerably from the consensus of typical CHSs, and the catalytic properties are different. The data indicate that it represents a new member in the large superfamily of chs and chs-related genes.  相似文献   

19.
Two dominant genes conferring complete resistance to specific isolates of the rice blast fungus, Pyricularia grisea Sacc., were located on the molecular map of rice in this study. Pi-l(t) is a blast resistance gene derived from the cultivar LAC23. Its map location was determined using a pair of nearly isogenic lines (NILs) and a B6F3 segregating population from which the isoline was derived. RFLP analysis showed that Pi-l(t) is located near the end of chromosome 11, linked to RZ536 at a distance of 14.0±4.5 centiMorgans (cM). A second gene, derived from the cultivar Apura, was mapped using a rice doubled-haploid (DH) population. This gene was located on chromosome 12, flanked by RG457 and RG869, at a distance of 13.5+-4.3 cM and 17.7+-4.5 cM, respectively. The newly mapped gene on chromosome 12 may be allelic or closely linked toPi-ta. (=Pi-4(t)), a gene derived from Tetep that was previously reported to be linked to RG869 at a distance of 15.4±4.7 cM. The usefulness of markers linked to blast resistance genes will be discussed in the context of breeding for durable blast resistance.  相似文献   

20.
The cytoplasmic male sterility (CMS) of wild-abortive (WA) cytoplasm has been widely used for breeding hybrid rice. Two restorer genes for the CMS have been found by traditional genetic analysis. To tag the restorer genes we used a set of near-isogenic lines (NILs) of Zhenshan 97 carrying different genotypes for fertility restoration from IR24, to perform RAPD analysis. From the survey of 720 random primers, six RAPD markers were identified to be associated with Rf-3. Three of these OPK05-800, OPU10-1100 and OPW01-350, were mapped on chromosome 1. Two populations from the crosses between Zhenshan 97 A and a near-isogenic restorer line ZSR21 and between Zhenshan 97 A and IR24 were used for mapping Rf-3. The three RAPD markers and three RFLP markers, RG532, RG140 and RG458, were found to be closely linked to Rf-3 in the two populations. The same location of Rf-3 was also found in a population from the cross of IR58025 A//IR36/IR58025 B. At the RG532 locus, different alleles were found between two CMS lines, Zhenshan 97 A and IR58025 A, and between two restorer lines, IR24 and IR36. The use of these molecular markers closely linked to Rf-3 in facilitating the development of hybrid rice is discussed. Received: 3 January 1996 / Accepted: 17 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号