首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gm2 is dominant gene conferring resistance to biotype 1 of gall midge (Orseolia oryzae Wood-Mason), the major dipteran pest of rice. The gene was mapped by restriction fragment length polymorphism (RFLP) analysis of a set of 40 recombinant inbred lines derived from a cross between the resistant variety Phalguna and the susceptible landrace ARC 6650. The gene is located on chromosome 4 at a position 1.3 cM from marker RG329 and 3.4 cM from RG476. Since the low (28%) polymorphism of this indica x indica cross hindered full coverage of the genome with RFLP markers, the mapping was checked by random amplified polymorphic DNA (RAPD)/bulked segregant analysis. Through the use of 160 RAPD primers, the number of polymorphic markers was increased from 43 to 231. Two RAPD primers amplified loci that co-segregated with resistance/susceptibility. RFLP mapping of these loci showed that they are located 0.7 cM and 2.0 cM from RG476, confirming the location of Gm2 in this region of chromosome 4. Use of these DNA markers will accelerate breeding for gall midge resistance by permitting selection of the Gm2 gene independently of the availability of the insect.  相似文献   

2.
 Ten yeast artificial chromosomes (YACs) spanning the Gm2 locus have been isolated by screening high-density filters containing a total of approximately 7000 YAC (representing six genome equivalents) clones derived from a japonica rice, Nipponbare. The screening was done with five RFLP markers flanking a gall midge resistance gene, Gm2, which was previously mapped onto chromosome 4 of rice. This gene confers resistance to biotype 1 and 2 of gall midge (Orseolia oryzae), a major insect pest of rice in South and Southeast Asia. The RFLP markers RG214, RG329 and F8 hybridized with YAC Y2165. Two overlapping YAC clones (Y5212 and Y2165) were identified by Southern hybridization, with Gm2-flanking RFLP markers, and their inserts isolated. The purified YACs and RFLP markers flanking Gm2 were labeled and physically mapped by the fluorescence in situ hybridization (FISH) technique. All of them mapped to the long arm of chromosome 4 of the resistant variety of rice, ‘Phalguna’, confirming the previous RFLP mapping data. Received: 15 December 1997 / Accepted: 5 March 1998  相似文献   

3.
Linkage analysis of a fertility restoring mutant generated from CMS rice   总被引:9,自引:0,他引:9  
 DNA polymorphism between a cytoplasmic male-sterile rice line II-32A, the male-fertile maintainer counterpart II-32B, a fertile revertant (T24), as well as two commercial indica restorers, was analyzed with randomly amplified polymorphic DNA (RAPD). A very low degree of polymorphism was found between the revertant T24 and II-32A compared with that of indica rice varieties. This result, together with agronomic and genetic evidence, suggests the revertant to be a product of a nuclear mutation. An analysis of polymorphism between II-32A and the revertant T24 with 510 RAPD decamer primers identified the co-segregating markers OPB07640 and OPB181000 to be linked to a sterile allele of the restoring locus in the revertant T24, at a distance of 5.3 cM. RAPD analysis of a mapping population of Tesanai2/CB with primer OPB07 revealed linkage of OPB07640 with RG374 (10.8 cM) and RG394 (8.8 cM) on chromosome 1. Thus the restorer gene, designated Rf 5, was tentatively localized between RG374 and RG394 on chromosome 1 and appears to be independent of other mapped restorer genes in rice. Received: 11 November 1997 / Accepted: 17 December 1997  相似文献   

4.
 Complementary recessive genes hwd1 and hwd2 controlling hybrid breakdown (weakness of F2 and later generations) were mapped in rice using RFLP markers. These genes produce a plant that is shorter and has fewer tillers than normal plants when the two loci have only one or no dominant allele at both loci. A cultivar with two dominant alleles at the hwd1 locus and a cultivar with two dominant alleles at the hwd2 locus were crossed with a double recessive tester line. Linkage analysis was carried out for each gene independently in two F2 populations derived from these crosses. hwd1 was mapped on the distal region of rice genetic linkage map for chromosome 10, flanked by RFLP markers C701 and R2309 at a distance of 0.9 centiMorgans (cM) and 0.6 cM, respectively. hwd2 was mapped in the central region of rice genetic linkage map for chromosome 7, tightly linked with 4 RFLP markers without detectable recombination. The usefulness of RFLP mapping and map information for the genes controlling reproductive barriers are discussed in the context of breeding using diverse rice germplasm, especially gene introduction by marker-aided selection.  相似文献   

5.
The gall midge, Orseolia oryzae, is a major dipteran pest of rice affecting most rice growing regions in Asia, Southeast Asia and Africa. Chemical and other cultural methods for control of this pest are neither very effective nor environmentally safe. The gall midge problem is further compounded by the fact that there are many biotypes of this insect and new biotypes are continuously evolving. However, resistance to this pest is found in the rice germ plasm. Resistance is generally governed by single dominant genes and a number of non-allelic resistance genes that confer resistance to different biotypes have been identified. Genetic studies have revealed that there is a gene-for-gene interaction between the different biotypes of gall midge and the various resistance genes found in rice. This review discusses different aspects of the process of infestation by the rice gall midge and its interaction with its host. Identification of the gall midge biotypes by conventional methods is a long and tedious process. The review discusses the PCR-based molecular markers that have been developed recently to speed up the identification process. Similarly, molecular markers have been developed for two gall midge resistance genes in rice – Gm2 and Gm4t – and these markers are now being used for marker-assisted selection. The mapping, tagging and map-based gene cloning of one of these genes – Gm2 – has also been discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
 A PCR-based marker (E20570) linked to the gene Gm4t, which confers resistance to a dipteran pest gall midge (Orseolia oryzae), has been mapped using the restriction fragment length polymorphism (RFLP) technique in rice. Gm4t is a dominant resistance gene. We initially failed to detect useful polymorphism for this marker in a F3 mapping population derived from a cross between two indica parents, ‘Abhaya’בShyamala’, with as many as 35 restriction enzymes. ‘Abhaya’ carries the resistance gene Gm4t and ‘Shyamala’ is susceptible to gall midge. Subsequently, E20570 was mapped using another mapping population represented by a F2 progeny from a cross between ‘Nipponbare’, a japonica variety, and ‘Kasalath’, an indica variety, in which the gene Gm4t was not known to be present. Gm4t mapped onto chromosome 8 between markers R1813 and S1633B. Our method, thus, presents an alternative way of mapping genes which otherwise would be difficult to map because of a lack of polymorphism between closely related parents differing in desired agronomic traits. Received: 1 April 1997 / Accepted: 13 May 1997  相似文献   

7.
Macrogametophytes derived from the seeds of a tree resistant to pine needle gall midge (PGM) were analyzed using amplified fragment length polymorphism (AFLP). A total of 244 segregating loci were detected among 71 macrogametophytes. Combining the AFLP results with previously reported segregation data for 127 random amplified polymorphic DNA (RAPD) markers, 157 AFLP and 50 RAPD markers with confirmed map positions were assigned to 20 linkage groups and three pairs covering 2085.5 cM with an average distance of 10.1 cM. The total map distance covers about 77.1–78.4% of the total genome, estimated to be approximately 2665–2719 cM in length. Thus, using AFLP markers, the previous RAPD map of this tree was improved in terms of the average distance between markers, the total map distance, and coverage of the genome. Three RAPD markers linked to a gene associated with resistance to PGM were also located on this map. Rceived: 14 April 2000 / Accepted: 21 August 2000  相似文献   

8.
The cytoplasmic male sterility (CMS) of wild-abortive (WA) cytoplasm has been widely used for breeding hybrid rice. Two restorer genes for the CMS have been found by traditional genetic analysis. To tag the restorer genes we used a set of near-isogenic lines (NILs) of Zhenshan 97 carrying different genotypes for fertility restoration from IR24, to perform RAPD analysis. From the survey of 720 random primers, six RAPD markers were identified to be associated with Rf-3. Three of these OPK05-800, OPU10-1100 and OPW01-350, were mapped on chromosome 1. Two populations from the crosses between Zhenshan 97 A and a near-isogenic restorer line ZSR21 and between Zhenshan 97 A and IR24 were used for mapping Rf-3. The three RAPD markers and three RFLP markers, RG532, RG140 and RG458, were found to be closely linked to Rf-3 in the two populations. The same location of Rf-3 was also found in a population from the cross of IR58025 A//IR36/IR58025 B. At the RG532 locus, different alleles were found between two CMS lines, Zhenshan 97 A and IR58025 A, and between two restorer lines, IR24 and IR36. The use of these molecular markers closely linked to Rf-3 in facilitating the development of hybrid rice is discussed. Received: 3 January 1996 / Accepted: 17 May 1996  相似文献   

9.
 A genetic linkage map of Pisum sativum L. was constructed based primarily on RAPD markers that were carefully selected for their reproducibility and scored in a population of 139 recombinant inbred lines (RILs). The mapping population was derived from a cross between a protein-rich dry-seed cultivar ‘Térèse’ and an increased branching mutant (K586) obtained from the pea cultivar ‘Torsdag’. The map currently comprises nine linkage groups with two groups comprising only 6 markers (n=7 in pea) and covers 1139 cM. This RAPD-based map has been aligned with the map based on the (JI281×JI399) RILs population that currently includes 355 markers in seven linkage groups covering 1881 cM. The difference in map lengths is discussed. For this alignment 7 RFLPs, 23 RAPD markers, the morphological marker le and the PCR marker corresponding to the gene Uni were used as common markers and scored in both populations. Received: 13 March 1998 / Accepted: 29 April 1998  相似文献   

10.
Host-plant resistance is the preferred strategy for management of Asian rice gall midge (Orseolia oryzae), a serious pest in many rice-growing countries. The deployment of molecular markers linked to gall midge resistance genes in breeding programmes can accelerate the development of resistant cultivars. In the present study, we have tagged and mapped a dominant gall midge resistance gene, Gm1, from the Oryza sativa cv. W1263 on chromosome 9, using SSR markers. A progeny-tested F2 mapping population derived from the cross W1263/TN1 was used for analysis. To map the gene locus, initially a subset of the F2 mapping population consisting of 20 homozygous resistant and susceptible lines each was screened with 63 parental polymorphic SSR markers. The SSR markers RM316, RM444 and RM219, located on chromosome 9, are linked to Gm1 at genetic distances of 8.0, 4.9 and 5.9 cM, respectively, and flank the gene locus. Further, gene/marker order was also determined. The utility of the co-segregating SSR markers was tested in a backcross population derived from the cross Swarna/W1263//Swarna, and allelic profiles of these markers were analysed in a set of donor rice genotypes possessing Gm1 and in a few gall midge-susceptible, elite rice varieties.  相似文献   

11.
Linkage of RAPD markers to a single dominant gene for resistance to pine needle gall midge was investigated in Japanese black pine (Pinus thunbergii). Three primers that generated linked markers were found after 1160 primers were screened by bulked segregant analysis. The distances between the resistance gene, R, and the marker genes OPC06580, OPD01700, and OPAX192100 were 5.1 cM, 6.7 cM and 13.6 cM, respectively. OPC06580 was in coupling phase to R, whereas OPD01700 and OPAX192100 were in repulsion phase to R. A linkage map for a resistant tree was constructed using 96 macrogametophytes. In linkage analysis, 98 out of 127 polymorphic markers were assigned to 17 linkage groups and six linked pairs. The total length of this map was 1469.8 cM, with an average marker density of 15.6 cM. The genome length was estimated to be 2138.3 cM, and the derived linkage map covered 67.5% of the genome. Although the linked markers OPC06580, OPAX192100, and OPD01700, belonged to the same linkage group, no precise positions were found for OPC06580 or OPD01700. Received: 15 May 1999 / Accepted: 29 July 1999  相似文献   

12.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

13.
 The recessive gene, xa13, confers resistance to Philippine race 6 (PXO99) of the bacterial blight pathogen Xanthomonas oryzae pv oryzae. Fine genetic mapping and physical mapping were conducted as initial steps in an effort to isolate the gene. Using nine selected DNA markers and two F2 populations of 132 and 230 plants, xa13 was fine-mapped to a genomic region <4 cM on the long arm of rice chromosome 8, flanked by two RFLP markers, RG136 and R2027. Four DNA markers, RG136, R2027, S14003, and G1149, in the target region were used to identify bacterial artificial chromosome (BAC) clones potentially harboring the xa13 locus from a rice BAC library. A total of 11 BACs were identified, forming four separate contigs including a single-clone contig, 29I3, associated with the RG136 STS marker, the S14003 contig consisting of four clones (44F8, 41O2, 12A16, and 12F20), the G1149 contig with two clones, 23D11 and 21H18, and the R2027 contig consisting of four overlapping clones, 42C23, 30B5, 6B7 and 21H14. Genetic mapping indicated that the xa13 locus was contained in the R2027 contig. Chromosomal walking on the R2027 contig resulted in two more clones, 33C7 and 14L3. DNA fingerprinting showed that the six clones of the R2027 contig were overlapping. Clone 44F8 hybridized with a single fragment from the clone 14L3, integrating the R2027 and S14003 contigs into a single contig consisting of ten BAC clones with a total size of approximately 330 kb. The physical presence of the xa13 locus in the contig was determined by mapping the ends of the BAC inserts generated by TAIL-PCR. In an F2 population of 230 plants, the BAC-end markers 42C23R and 6B7F flanked the xa13 locus. The probes 21H14F and 21H14R derived from BAC clone 21H14 were found to flank xa13 at a distance of 0.5 cM on either side, using a second F2 population of 132 plants. Thus, genetic mapping indicated that the contig and the 96-kb clone, 21H14, contained the xa13 locus. Received: 15 August 1998 / Accepted: 29 September 1998  相似文献   

14.
The Asian rice gall midge, Orseolia oryzae Wood-Mason (Cecidomyiidae: Diptera) is a serious pest of wet season rice in South and Southeast Asia. Due to internal feeding habit and presence of biotypes of the pest, the most feasible way to control is breeding varieties resistant against multiple biotypes through marker-assisted breeding (MAB). But very few versatile co-dominant markers linked to the gall midge resistance genes are available. We used a set of F9 recombinant inbred lines (RILs) of the cross TN1/PTB10 and identified microsatellite markers for the gall midge resistance gene in cv. PTB10 on short arm of rice chromosome 8. Markers RM22550 and RM547 flank the gene at a distance of 0.9 and 1.9 cM, respectively. Amplification of the markers in gall midge resistant and susceptible cultivars showed that these markers can be successfully used in MAB for development of gall midge resistant varieties.  相似文献   

15.
Rice blast, caused byPyricularia grisea, is a major production constraint in many parts of the world. The Korean rice variety Tongil showed high levels of resistance for about six years when widely planted under highly disease-conducive conditions, before becoming susceptible. Tongil was found to carry a single dominant gene, designatedPi-10t, conferring resistance to isolate 106 of the blast pathogen from the Philippines. We report here the use of bulked segregant RAPD analysis for rapid identification of DNA markers linked toPi-10t. Pooled DNA extracts from five homozygous blast-resistant (RR) and five susceptible (rr) BC3F2 plants, derived from a CO39 × Tongil cross, were analyzed by RFLP using 83 polymorphic probes and by RAPD using 468 random oligomers. We identified two RAPD markers linked to thePi-10t locus: RRF6 (3.8 ± 1.2 cM) and RRH18 (2.9 ± 0.9 cM). Linkage of these markers withPi-10t was verified using an F2 population segregating forPi-10t. The two linked RAPD markers mapped 7 cM apart on chromosome 5. Chromosomal regions surrounding thePi-10t gene were examined with additional RFLP markers to define the segment introgressed from the donor genome.Pi-10t is likely to be a new blast-resistance locus, because no other known resistance gene has been mapped on chromosome 5. These tightly linked RAPD markers could facilitate early selection of thePi-10t locus in rice breeding programmes.  相似文献   

16.
Two dominant genes conferring complete resistance to specific isolates of the rice blast fungus, Pyricularia grisea Sacc., were located on the molecular map of rice in this study. Pi-l(t) is a blast resistance gene derived from the cultivar LAC23. Its map location was determined using a pair of nearly isogenic lines (NILs) and a B6F3 segregating population from which the isoline was derived. RFLP analysis showed that Pi-l(t) is located near the end of chromosome 11, linked to RZ536 at a distance of 14.0±4.5 centiMorgans (cM). A second gene, derived from the cultivar Apura, was mapped using a rice doubled-haploid (DH) population. This gene was located on chromosome 12, flanked by RG457 and RG869, at a distance of 13.5+-4.3 cM and 17.7+-4.5 cM, respectively. The newly mapped gene on chromosome 12 may be allelic or closely linked toPi-ta. (=Pi-4(t)), a gene derived from Tetep that was previously reported to be linked to RG869 at a distance of 15.4±4.7 cM. The usefulness of markers linked to blast resistance genes will be discussed in the context of breeding for durable blast resistance.  相似文献   

17.
 Pearl millet [Pennisetum glaucum (L.) R.Br.] is a warm-season grass used for food, feed, fodder and forage, primarily in countries of Africa and India but grown around the world. The two most-destructive diseases to pearl millet in the United States are rust (caused by Puccinia substriata var. indica) and pyricularia leaf spot (caused by Pyricularia grisea). Genes for disease resistance to both pathogens have been transferred into agronomically acceptable forage and grain cultivars. A study was undertaken to identify molecular markers for three rust loci and one pyricularia resistance locus. Three segregating populations were screened for RAPDs using random decamer primers and for RFLPs using a core set of probes detecting single-copy markers on the pearl millet map. The rust resistance gene Rr 1 from the pearl millet subspecies P. glaucum ssp. monodii was linked 8.5 cM from the RAPD OP-G8350. The linkage of two RFLP markers, Xpsm108 (15.5 cM) and Xpsm174 (17.7 cM), placed the Rr 1 gene on linkage-group 3 of the pearl millet map. Rust resistance genes from both Tift 89D2 and ICMP 83506 were placed on linkage-group 4 by determining genetic linkage to the RFLP marker Xpsm716 (4.9 and 0.0 cM, respectively). Resistance in ICMP 83506 was also linked to the RFLP marker Xpsm306 (10.0 cM), while resistance in Tift 89D2 was linked to RAPD markers OP-K19350 (8.8 cM) and OP-O8350 (19.6 cM). Fragments from OP-K19 and OP-O8 in the ICMP 83506 population, and Xpsm306 in the Tift 89D2 population, were monomorphic. Only one RAPD marker (OP-D11700, 5.6 cM) was linked to pyricularia leaf spot resistance. Attempts to detect polymorphisms with rice RFLP probes linked to rice blast resistance (Pyricularia oryzae; syn=P. grisea) were unsuccessful. Received: 19 May 1997 / Accepted: 21 October 1997  相似文献   

18.
Locating the petunia Rf gene on a 650-kb DNA fragment   总被引:1,自引:0,他引:1  
 A bulked segregant analysis was conducted in order to find RAPD and AFLP markers linked to the restorer of fertility (Rf ) gene in petunia. One RAPD marker, OP704, and one AFLP marker, ECCA/ MACT, were found to be closely linked to Rf (<1 cM) in our mapping population produced from an intraspecific Petunia hybrida cross. These two single-copy markers bracketing Rf were then mapped as RFLPs on the tomato map. Despite some rearrangement between the petunia and the tomato genomes, this synteny survey revealed two tomato markers, TG250 and CT24, closely linked to Rf. Physical mapping indicates that CT24, OP704 and ECCA/MACT lie on the same 650-kb MluI fragment. A physical to genetic distance ratio of 400 kb/cM around the Rf gene should make it feasible to identify markers physically very close to Rf. Received: 20 August 1997 / Accepted: 21 October 1997  相似文献   

19.
Damage caused by insect herbivores, notably Asian rice gall midge, Orseolia oryzae is more prevalent in the rice-growing belts of India's southern and north-eastern states. As a prelude to resistant cultivar development, the identification of genomic regions for resistance in the source population is crucial. In the present investigation, 202 rice genotypes were phenotyped and assayed with genomic markers reported for gall midge resistance. Positive skewness and platykurtic distribution of response scores suggested the inheritance of gall midge resistance in the study population. The marker gm3del3 contributed the most genetic variation, followed by RM28574 and marker RM22709 explained minimal variation. A marker-trait association analysis with a single marker-trait linear regression approach was performed to discover gall midge resistant genomic region/genes. The marker RM17480 on chromosome 4 reported to be linked with gm3 gene was found significantly associated with the gall midge resistance genomic region with allelic effects in a negative direction favouring resistance reaction. The allelic effects of significantly associated markers were correlated significantly with the phenotypic variation of gall midge damage scores. Genes identified in the vicinity of this marker contribute to stress response reactions in rice plants. The 200 bp allele of the marker was associated with susceptibility, while the 250 bp allele was associated with resistance expression. This allelic association with trait variation suggests the importance of associated marker for utilisation in marker-assisted selection programmes to incorporate resistance alleles into elite rice genotypes.  相似文献   

20.
TGMS (thermo-sensitive genic male-sterile) rice is widely used in hybrid rice production. Because of a specific temperature requirement, it can be used only in a narrow rice-growing zone in Asia. A newly discovered reverse thermo-sensitive genic male-sterile line, J207S, has an opposite phynotype compared to the normal TGMS lines. J207S is completely sterile when the temperature is lower than 31°C. Thus, it can be widely used in a larger area. Genetic analysis indicated that the sterility of J207S was controlled by a single recessive gene which was first named as rtms1. An F2 population from the cross between J207S and E921 was developed and used for molecular mapping of the rtms1 gene. The AFLP (amplified fragment length polymorphism) technique, combined with BSA (bulked segregant analysis), was used to screen markers linked to the target gene, and eight polymorphic AFLP loci were identified. Co-segregating analysis using the F2 population showed that two of them, Rev1 and Rev7, were closely linked to the target gene with a recombinant rate of 3.8% and 7.7%, respectively. Both Rev1 and Rev7 were found to be single-copy sequences through Southern analysis. Rev1 was subsequently mapped on chromosome 10 with a doubled-haploid mapping populations derived from the cross CT9993 × IR62266 available at Texas Tech University. RM222 and RG257 were linked to Rev1 at a distance of 11.8 cM and 4.6 cM, respectively. Additional SSR markers from the rice map of Cornell University, RFLP markers from the map of RGP in Japan and the map of Texas Tech University were selected from the region surrounding Rev1 on chromosome 10 to conduct the fine-mapping of the rtms1 gene. Presently, rtms1 was mapped between RM239 and RG257 with genetic distance of 3.6 cM and 4.0 cM, respectively. The most-closely linked AFLP marker, Rev1, 4.2 cM from the rtms1 gene, was sequenced and converted into a SCAR (sequence characterized amplified region) marker which could facilitate marker-assisted selection of the rtms1 gene. Received: 2 November 2000 / Accepted: 21 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号