首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以微水溶剂热法快速制备的稳定锆基金属有机框架为载体,戊二醛为交联剂,采用交联法对酰胺酶进行固定化,考察了不同条件对酰胺酶固定化效率的影响。结果表明,戊二醛浓度为1.0%、交联时间为180 min、载体与酶的质量比为8︰1,固定化效率最佳,固定化酶活力回收率达86.4%,蛋白负载量达115.3 mg/g。固定化酶最适温度为40 ℃,最适pH值为9.0,在40 ℃下半衰期为72.2 d,该固定化酶的Km为58.32 mmol/L,Vmax为16.23 μmol/(min·mg),kcat为1 670 s–1。此外,考察了固定化酶催化合成 (S)-4-氟苯甘氨酸的工艺:最适底物浓度300 mmol/L,固定化酶用量10 g/L,反应时间180 min,在最佳反应条件下转化率达49.9%,对映体过量 (Enantiomeric excess,e.e.) 为99.9%。进一步考察了该固定化酶分批催化反应性能,重复使用20批次后,固定化酶活力仍保留95.8%。  相似文献   

2.
目的:阿糖腺苷(Ara-A)是一种广谱抗病毒药物,临床上用于治疗多种病毒性疾病.同时也是合成阿糖腺苷单磷酸(Ara-AMP)的重要原料.本课题旨在寻找一种高效酶法生产嘌呤类阿糖核苷的方法.方法:以产气肠杆菌完整细胞为酶源,研究产气肠杆菌菌体培养条件对核苷磷酸化酶的影响及其诱导性.结果:胸苷磷酸化酶、尿苷磷酸化酶和嘌呤核苷磷酸化酶均可被多种核苷、核苷酸甚至碱基诱导.胞苷或胞苷酸的添加量为15-20mmol/L,诱导时间在0-8小时均可.经胞苷和胞苷酸诱导的菌体可使酶反应时间缩短6倍,大大提高了反应效率.经诱导的菌体,在反应后仍保持较高的核苷磷酸化酶活力;而未经诱导的菌体,一次反应后即丧失大量的酶活力.结论:核苷磷酸化酶的活性可以通过诱导而提高,以此优化阿糖腺苷的生产.  相似文献   

3.
利用生物酶进行体外催化反应合成不同种类的尿苷二磷酸糖(uridine diphosphate sugar,UDP-糖),生物酶的重复利用率较低。为提高尿苷二磷酸糖的合成效率及增加产物种类,以镍螯合聚丙烯酸酯树脂为载体,对带有HIS标签的N-乙酰己糖胺激酶(N-acetylhexosamine kinase,NahK)和尿苷转移酶(uridine transferase,GlmU)进行固定化。以固定化NahK和固定化GlmU为催化酶,不同单糖作为底物,研究尿苷二磷酸糖的一锅法合成情况。利用Q柱对产物进行纯化,通过高效液相色谱法、质谱法、核磁共振氢谱法对反应产物进行检测。确定了镍螯合聚丙烯酸酯树脂对游离NahK和GlmU的实际载量分别为10和20 mg·g-1。固定化酶量的最优配比为5.5 g固定化NahK和2.5 g固定化GlmU。固定化酶的最适pH和温度分别为8.0和35℃,且能在重复反应中稳定反应5个批次。葡萄糖、N-乙酰氨基葡萄糖和甘露糖可以参与一锅法反应,生成UDP-糖的相对分子质量分别为566、607、566,而葡萄糖醛酸、半乳糖和果糖在该体系下不能合成相应的UDP-糖。基于固定化酶技术,一锅法可合成UDP-葡萄糖、UDP-N-乙酰氨基葡萄糖、UDP-甘露糖。  相似文献   

4.
黄欣  李益民  杜聪  袁文杰 《生物工程学报》2022,38(12):4669-4680
聚磷酸激酶(polyphosphate kinase,PPK)在体外催化合成ATP的反应中有着重要作用。为寻找能利用短链聚磷酸盐(polyphosphate,polyP)为底物高效合成ATP的聚磷酸激酶,本文以来源于泗阳鞘氨醇杆菌(Sphingobacterium siyangensis)的聚磷酸激酶(PPK2)为研究目标,利用pET-29a构建重组质粒,在大肠杆菌(Escherichia coli)BL21(DE3)中表达,并将其作为ATP再生系统的关键酶与l-氨基酸连接酶(YwfE)联用生产丙谷二肽(Ala-Gln)。ppk2长度为810bp,编码270个氨基酸;SDS-PAGE结果表明PPK2为可溶性表达,分子量为29.7kDa。对PPK2的最适反应条件进行了优化,结果发现其在22–42℃、pH7–10的范围内均可以保持较好活性,且在37℃、pH为7、镁离子(Mg2+)浓度为30mmol/L、底物ADP与六偏磷酸钠浓度分别为5mmol/L和10mmol/L时酶活最大,在0.5h时ATP产率可以达到理论值的60%以上。作为模式反应体系,当PPK2与YwfE联用生产Ala-Gln时,达到与直接添加ATP相同的效果。此聚磷酸激酶作为ATP再生系统具有较好的适用性,适用的温度和pH范围广,且能以廉价易得的短链polyP为底物高效合成ATP,为依赖ATP的催化反应体系的能量再生提供了新酶的来源。  相似文献   

5.
根据反应机理和产物的化学结构,建立了嗜热脂肪芽孢来源的β-半乳糖苷酶催化乳糖水解和转半乳糖苷反应偶合的动力学模型,模型中包含了低聚三糖和低聚四糖的生成。通过优化计算,估算反应动力学参数,结果表明该模型能较好地与实验结果相吻合。  相似文献   

6.
β-呋喃果糖苷酶的固定化及其在低聚乳果糖合成中的应用   总被引:1,自引:1,他引:0  
【目的】探索适宜的树脂作为载体固定β-呋喃果糖苷酶,并研究该固定化酶催化合成低聚乳果糖。【方法】选择9种大孔吸附树脂和碱性离子交换树脂固定β-呋喃果糖苷酶,筛选固定化效果较好的树脂作为载体。用聚乙烯亚胺(PEI)修饰得到PEI-树脂,采用吸附法将酶固定于PEI-树脂上,并对固定化条件进行优化。考察固定化酶的重复使用稳定性及其催化合成低聚乳果糖的能力。【结果】通过筛选发现大孔阴离子交换树脂D311固定化效果较好,经过PEI修饰后,D311固定化效果显著提高。用PEI修饰的载体PEI-D311固定果糖苷酶,最优固定化条件为:PEI浓度2%,加酶量103 U/g,吸附温度25°C,吸附p H 6.0-8.0,吸附时间8 h。最优条件下固定化酶活达57 U/g,酶活回收率达55.3%。用固定化酶催化水解1 mol/L蔗糖,重复利用15批载体酶活没有明显降低。用固定化酶催化合成低聚乳果糖,8 h内低聚乳果糖产量最高达到137 g/L。【结论】PEI-D311固定的果糖苷酶具有较好的重复使用稳定性及较高的低聚乳果糖合成能力,这为固定化酶法生产低聚乳果糖研究奠定了基础。  相似文献   

7.
比较了以海藻酸钠为载体,用胶囊法、包埋-交联法、交联-包埋法三种不同方法固定化黑曲霉β-葡萄糖苷酶的效果,并研究了最佳固定化方法的固定化条件和固定化酶的部分性质。结果表明,交联-包埋法即β-葡萄糖苷酶与0.20%戊二醛交联后再用2.0%海藻酸钠包埋的固定化方法中酶结合效率和酶活力回收率最高。海藻酸钠浓度和戊二醛浓度对酶结合效率影响较大,戊二醛浓度和包埋颗粒直径大小对酶活力回收率影响显著。与游离酶相比,制备的固定化酶最适温度、最适pH值和Km值分别由50℃、4.5和2.57μg/mL下降到40℃、4.0和2.02μg/mL。固定化酶具有更强的耐酸性和稳定性。该固定化酶用于大豆异黄酮活性苷元染料木素的合成,重复使用6次后,固定化酶的活力仍保持84.94%,染料木苷转化率为56.04%。  相似文献   

8.
采用β-葡萄糖苷酶两相催化法水解栀子苷的研究   总被引:1,自引:0,他引:1  
本研究探索采用有机溶剂/水两相系统作为反应体系来进行栀子苷的酶解反应。以栀子苷和京尼平在水相溶剂中的分配系数作为考察指标,从4种有机溶剂/水两相系统中筛选适合采用两相催化反应体系水解栀子苷的两相溶剂系统。经筛选发现,正丁醇/水两相系统为最佳反应系统,其中栀子苷在水相中的分配比为74.2%,而京尼平仅为22.1%。以正丁醇/水两相系统作为的反应体系,采用β-葡萄糖苷酶催化栀子苷水解,酶解条件为反应温度为50℃,pH为5.0,转速为180 rpm,并采用HPLC-UV对反应过程进行检测。栀子苷转化率在反应10 h后达到86.6%。  相似文献   

9.
基于膨润土的层柱黏土固定β-葡萄糖醛酸苷酶的研究   总被引:1,自引:0,他引:1  
以膨润土制备的层柱黏土为载体,考察给酶量、固定化pH、温度和时间对固定化β-葡萄糖醛酸苷酶活性的影响,并对其操作稳定性进行研究。结果表明:给酶量为2700U/g,最适pH为3.6,固定化温度40℃,固定化60min条件下固定化酶催化活性较高;酶经固定化后其热稳定性及储存稳定性显著提高。  相似文献   

10.
比较了以海藻酸钠为载体,用胶囊法、包埋-交联法、交联-包埋法三种不同方法固定化黑曲霉β-葡萄糖苷酶的效果,并研究了最佳固定化方法的固定化条件和固定化酶的部分性质。结果表明,交联-包埋法即β-葡萄糖苷酶与0.20%戊二醛交联后再用2.0%海藻酸钠包埋的固定化方法中酶结合效率和酶活力回收率最高。海藻酸钠浓度和戊二醛浓度对酶结合效率影响较大,戊二醛浓度和包埋颗粒直径大小对酶活力回收率影响显著。与游离酶相比,制备的固定化酶最适温度、最适pH值和Km值分别由50℃、4.5和2.57 μg/mL下降到40℃、4.0和2.02 μg/mL。固定化酶具有更强的耐酸性和稳定性。该固定化酶用于大豆异黄酮活性苷元染料木素的合成,重复使用6次后,固定化酶的活力仍保持84.94%,染料木苷转化率为56.04%。  相似文献   

11.
从丝状真菌中筛选到一株产α-半乳糖苷酶的菌株F63,对该菌株进行了形态观察和18SrDNA序列分析,该菌株属于青霉属。采用硫酸铵沉淀、阴离子交换层析和分子筛层析等方法分离纯化了该菌株的一种α-半乳糖苷酶。经过聚丙烯酰胺凝胶电泳,此酶蛋白的分子量约为82kDa。该α-半乳糖苷酶反应的最适pH为5.0,最适温度为45℃。此α-半乳糖苷酶的热稳定性在40℃以下,pH稳定性为pH5.0-6.0。与已报道的α-半乳糖苷酶的活性都受到Ag 的强烈抑制不同的是,该α-半乳糖苷酶受Ag 的抑制作用不显著。以pNPG为底物的Km值为1.4mmol/L和Vmax=1.556mmol/L.min-1.mg-1。该酶可以有效降解蜜二糖、棉子糖和水苏糖,但不能降解末端含α-半乳糖苷键的多糖。通过利用质谱技术对纯化的α-半乳糖苷酶进行鉴定以及内肽的N端测序证明该蛋白为一种新的α-半乳糖苷酶。  相似文献   

12.
D-氨基酰化酶可用于D-氨基酸的生产,本研究利用来源于Microbacterium natoriense TNJL143-2的D-氨基酰化酶,分别通过琼脂糖包埋、介孔二氧化硅MCM-41和SBA-15吸附,制备了三种固定化酶,并对三种固定化酶的固定化条件、酶学性质、活性保持时间、重复使用次数、米氏常数等参数进行了研究。结果表明,MCM-41载体固定化酶的蛋白固定率为91.6%,SBA-15载体固定化酶的蛋白固定率为88.0%,琼脂糖包埋法蛋白固定率为79.5%。MCM-41、SBA-15以及琼脂糖三种载体固定化酶最适反应pH均为7.0,最适反应温度范围均为37℃。在固定化酶的活性保持时间以及重复利用活性方面,SBA-15固定化酶同样优于其他两种固定化酶。以D型苯丙氨酸(D-Phe)为底物时,琼脂糖包埋固定化酶的Km为28.8 mol/L,SBA-15固定化酶的Km为25.9 mol/L,MCM-41固定化酶的Km为25.0 mol/L。同时本文还探索了三种固定化酶的pH使用范围及酸碱稳定性、温度使用范围及热稳定性,结果显示,SBA-15作为固定化载体均表现出较广的适用范围及较高的稳定性。在不同条件的反应体系中,SBA-15固定化酶的蛋白损失率始终小于其他两种固定化酶。  相似文献   

13.
以树脂为载体研究β-半乳糖苷酶固定化条件,来改善酶性质。以吸附率和回收率最高的离子交换树脂I002为载体,通过先吸附后交联的方法固定β-半乳糖苷酶,优化固定化条件。结果表明:加酶量为51.8 U(以1 g树脂计),固定p H为6.5,温度是25℃,吸附时间12 h,戊二醛体积分数为4%,交联温度是40℃,时间是6 h时,固定化效果最好。获得的固定化酶活可达16.2 U,固定酶回收率为39.1%,得到低聚半乳糖(GOS)的产率为24.2%。该研究为工业化利用固定化乳糖酶连续生产低聚半乳糖提供了技术依据。  相似文献   

14.
从泰山土壤宏基因组文库中发现可能的β-半乳糖苷酶基因pwtsA,将其克隆到表达载体pET30a,转化E. coli BL21(DE3).工程菌在IPTG诱导下高效表达可溶性的重组蛋白PWTSA,分子量为57 kD,与预期大小一致.PWTSA能够水解ONPG产生o-硝基酚,酶活力为13.6 U/mg,确证了重组蛋白为β-半乳糖苷酶.PWTSA的最适反应温度在85℃-95℃之间,最适pH值为6.5,对90℃左右的高温有很好的耐受力.在标准反应条件下,酶作用于底物ONPG的米氏常数Km为0.83 mmol/L.  相似文献   

15.
莱鲍迪苷D(Rebaudioside D,RD)是一种稀有具有高甜度的甜菊糖苷类化合物。本文实现了重组大肠杆菌全细胞催化莱鲍迪苷A(Rebaudioside A,RA)合成RD。以水稻c DNA为模板,扩增得到葡萄糖基转移酶基因eugt11,构建了重组菌株E.coli BL21(p ETDuet-eugt11),并成功表达了重组蛋白6His-EUGT11。通过Ni柱亲和层析纯化并在体外酶催化反应表征了其催化活性。将重组菌BL21(p ETDuet-eugt11)应用于催化合成RD研究。探讨了反应体系pH、温度、柠檬酸钠浓度、菌体密度、二价金属离子、二甲苯体积分数、UDPG添加浓度对反应效率的影响。单因素考察结果显示,在菌体密度0.16 g湿细胞/m L反应液,底物RA浓度为1.0 mmol/L,pH 8.0,60 mmol/L柠檬酸钠,1%二甲苯,0.1 mmol/L Zn Cl2,12.0 mmol/L UDPG,反应温度42℃,反应时间24 h的条件下,RD产量为123.6 mg/L(约0.1 mmol/L)。  相似文献   

16.
酶转化法是生产β-丙氨酸的重要途径,但单一酶法转化存在底物价格较高的问题。通过构建双酶催化体系制备β-丙氨酸,即将来源于大肠杆菌的天冬氨酸酶(AspA)和来源于谷氨酸棒杆菌的L-天冬氨酸α-脱羧酶(PanD)偶联,以富马酸和氨为底物进行酶促反应合成β-丙氨酸。催化反应中AspA与PanD的最适加酶比例为1∶80,其中AspA的浓度为10μg/mL,转化温度为37℃,pH为7.0;浓度为100 mmol/L的富马酸可在8 h内被完全转化,转化率为100%,摩尔产率为90.9%,β-丙氨酸的产量为90 mmol/L,约为7 g/L;浓度为200 mmol/L的富马酸在反应8 h后,体系中β-丙氨酸的产量为126 mmol/L,约合9.8 g/L,继续延长反应时间,转化率并没有明显提高。根据该研究提出的双酶偶联转化工艺可将价格低廉的富马酸一步转化为具有高附加值的β-丙氨酸。  相似文献   

17.
木糖苷酶催化低聚木糖水解在木质纤维素降解中起重要作用,但该酶活性易被产物木糖抑制,严重限制了其应用。基于分子对接,本文研究了茶梗发酵培养基差异表达显著的黑曲霉(Aspergillus niger) β-木糖苷酶An-xyl与木糖的亲和性,并对其进行克隆表达和性质表征,进一步探讨了该酶与纤维素酶对茶梗中木质纤维素的降解作用。分子对接结果表明,An-xyl与木糖的亲和性低于木糖耐受性较差的米曲霉β-木糖苷酶xyl A。重组表达的An-xyl木糖抑制常数Ki值为433.2 mmol/L,与同为GH3家族的β-木糖苷酶相比木糖耐受性较高。以p NPX为底物时,Km和Vmax分别为3.6 mmol/L和10 000μmol/(min·mL)。An-xyl最适温度65°C,最适pH 4.0,65°C处理300 min能保持约61%的酶活力,在pH2.0-8.0的范围内处理24h后酶活力仍能维持80%左右。添加An-xyl与纤维素酶共同水解茶梗,反应2h和4h产生还原糖含量比单独使用纤维素酶水解分别提高了19.3%和38.6%。本研究表明,通过差异表达挖掘的An-xyl具有高木糖耐受性和较好的催化活...  相似文献   

18.
L-脯氨酸-4-羟化酶(L-Proline-4-hydroxylase,P4H)是依赖α-酮戊二酸(α-KG)和Fe2+的双加氧酶成员之一,在反式-4-羟基-L-脯氨酸(trans-4-hydroxy-L-proline,t-4Hyp)等重要手性化合物的生物合成中发挥关键作用。本研究构建了来源于Bradyrhizobium japonicum USDA 6的P4H重组大肠杆菌Escherichia coli BL21(DE3)/p ET-28b-p4h BJ,SDS-PAGE和酶活检测结果表明,该菌株具有表达可溶性P4H和催化合成t-4Hyp的能力。通过优化,确定了该重组菌全细胞催化合成t-4Hyp较优的反应体系和条件:10 m L p H 6.5 80 mmol/LMES缓冲液、9 mmol/L L-Pro,6 mmol/L L-抗坏血酸,6 mmol/Lα-KG,0.8 mmol/L Fe SO4·7H2O,反应温度为35℃;在20 g/L湿细胞的催化反应中,t-4Hyp的合成量达到34.86 mg/L,比优化前(17.53 mg/L)提高了98.86%。该工作为进一步利用P4H生物催化法合成t-4Hyp奠定了一定的技术基础。  相似文献   

19.
从海洋细菌Bacillus sp.D1中克隆、重组表达β-葡萄糖苷酶BglD2,研究其酶学性质,并对其水解虎杖苷制备白藜芦醇的能力进行分析。BglD2的最适催化温度和pH分别为45℃和6.5,在30℃和pH 6.5条件下的半衰期约为20 h。BglD2能够水解含β(1→3)、β(1→4)、β(1→6)等键型的多种底物。BglD2具有良好的糖促活特性,100 mmol/L葡萄糖和150 mmol/L木糖分别将酶活力提升2.0倍和2.3倍。BglD2具有较好的乙醇促活及耐受特性,30℃时,10%乙醇使酶活力提升1.2倍,25%乙醇存在时其仍保留60%的酶活力。BglD2具有水解虎杖苷制备白藜芦醇的能力,35℃条件下反应2 h水解率为86%。具有乙醇耐受及抗产物抑制等特性的β-葡萄糖苷酶BglD2在酶法水解虎杖苷制备白藜芦醇方面有应用潜力。  相似文献   

20.
[目的]克隆、表达小麦蓝矮病(WBD)植原体胸苷酸激酶基因(tmk),并分析酶活性,进一步研究胸苷酸激酶在植原体感染宿主及繁殖过程中的功能和作用机理,更好地防治植原体病害.[方法]PCR方法扩增tmk基因并进行序列分析,连接pET30a( )表达载体后原核表达,经Ni-NTA柱层析纯化后进行酶催化活性分析.[结果]首次从小麦蓝矮病(WBD)植原体基因组中分离出胸苷酸激酶基因(tmk),该基因包含tmk-1和tmk-2两种,大小分别为630 bp和624 bp,其编码的氨基酸序列均包含3个与结合NTP/NMP相关的保守功能区.表达的融合蛋白TMK-1活性极低,酶活仅16.4 U/mg,而 TMK-2酶活高达112.41 U/mg,且其最适催化条件为32℃、pH 7.3、1.5 mmol/L Mg2 和 1 mmol/L ATP.[结论]分析了胸苷酸激酶活性中心的一级结构序列及其催化活性随条件变化而改变的性质,为深入研究小麦蓝矮病植原体胸苷酸激酶在侵染寄主及其在宿主体内增殖的转录性质奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号