首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为建立一种适于法庭科学实践的植物物证DNA提取优化方法,以期获得高质量的适于PCR分析的模板DNA.用8种方法从不同植物的干叶片中提取DNA,利用线粒体DNA非编码区的PCR扩增结果分析评价提取DNA的质量.结果表明8种DNA提取方法所提取的DNA都可以获得线粒体DNA非编码区的PCR扩增产物,对照紫外波长扫描结果显示,以改进的CTAB方法制备的模板DNA纯度最高,可达到进口试剂盒同等制备精度,OD260/280稳定在1.7~1.9之间.因此改进的CTAB方法适用于微量植物样本的DNA提取,可应用于法庭科学实践.  相似文献   

2.
古DNA实时荧光定量PCR实验中标准品的制备   总被引:1,自引:0,他引:1  
实时荧光定量PCR技术通过对PCR每一循环扩增产物的实时检测,可对模板的精确拷贝数进行绝对定量,从而用于古DNA实验中提取和扩增条件的比较和优化.本研究采用异硫氰酸胍碱裂解-SiO2吸附的方法,从采自黑龙江省的晚更新世斑鬣狗化石材料中提取得到了斑鬣狗线粒体基因组古DNA.经常规PCR扩增后,将纯化的扩增产物克隆到微生物体内使其大量复制,再用M13通用引物扩增出含少量外源DNA的古DNA目标片段,从而建立了适用于古DNA荧光定量PCR扩增的标准品的制备方法.经检测分析,运用该方法制备的标准品性质稳定,能够准确地指示反应体系中较为精确的古DNA模板拷贝数,从而反映古DNA的提取和扩增效率,用于比较并优化古DNA提取和扩增条件.  相似文献   

3.
穿山甲标本和甲片的DNA提取及PCR扩增   总被引:1,自引:0,他引:1  
为验证经处理后的穿山甲(Manis spp.)标本和甲片是否可以用于种间分子鉴定标记的开发及个体识别工作,本文在样品的预处理、消化、提取后纯化等方面对传统提取方法进行了改进,分别从穿山甲剥制标本、干皮标本及甲片中提取总DNA;然后用Cyt b基因扩增通用引物、12S rRNA基因全序列扩增引物、RAPD引物及微卫星引物进行了PCR扩增,并对部分扩增结果进行了序列测定.结果表明,除剥制标本的脚底皮张组织外,其他样品基本都可以提取出DNA.以此为模板的PCR扩增中,2种线粒体基因引物扩增出明显目的条带,RAPD引物扩增出种间特异条带,测序结果可用于种间特异性引物及SCAR引物的开发;微卫星引物在甲片样品中扩增稳定,可用于个体识别工作.  相似文献   

4.
獐不同组织材料DNA提取的有效方法   总被引:2,自引:0,他引:2  
陈珉  张恩迪 《四川动物》2006,25(3):481-484
根据野外采集的獐肌肉、皮张、毛发、血迹、骨骼和粪便等不同样本的特点采用相适合的DNA提取方法,并对肌肉、皮张、毛发、骨骼的提取进行了改进,通过对线粒体细胞色素b和控制区基因PCR扩增反应以及测序结果证实,这几种DNA抽提方法及相应改进的可靠性,并可以提高野外非损伤性取材在保护遗传学中的应用。  相似文献   

5.
猕猴桃模板DNA的提取及RAPD-PCR最佳反应体系的建立   总被引:10,自引:0,他引:10  
以改良CTAB法从猕猴桃叶片中制备模板DNA ,优化了PCR热循环参数 ,建立了RAPD PCR扩增的最佳反应体系。实验结果表明 ,CTAB提取液中EDTA组分的浓度对模板提取影响很大 ,其最适浓度为 80mmol/L ;用异丙醇沉淀后不经乙醇洗涤纯化的DNA不会影响扩增效果。PCR热循环参数为 :94℃预变性 5min ;94℃变性 1min ,37℃退火 1min ,72℃延伸 2min ,循环 4 0次 ;最后在 72℃延伸 6min。  相似文献   

6.
刘莉  陈集双 《微生物学通报》2007,34(1):0057-0060
利用Taq DNA聚合酶既具有DNA聚合酶活性义具有反转录酶活性的特点,探索了在Taq DNA聚合酶单独作用下以双链RNA为模板进行PCR反应的条件。结果表明靶序列长度为277 bp、369 bp、987 bp时,均可直接进行PCR扩增;短片段序列扩增的退火温度在47.0℃、47.9℃、50.2℃、52.6℃、54.9℃、56.7℃条件下,均可有效扩增,而长片段序列扩增的退火温度在50.2℃、52.6℃、54.9℃、56.7℃条件下,也可扩增出相应的靶序列。这一结果提示利用Taq DNA聚合酶可以dsRNA为模板直接扩增目的片段,尤其是短片段的扩增。  相似文献   

7.
一种快速高效提取病原真菌DNA作为PCR模板的方法   总被引:4,自引:0,他引:4  
真菌rDNA-ITS序列分析适合于较高等级水平的生物群体间的系统分析。真菌DNA的提取采用传统的方法,步骤繁琐,需要较长时间。采用Chelex-100法提取真菌DNA,使用PCR扩增rDNA-ITS序列评价提取核酸的质量。结果显示,该方法具有经济、简便、快速、高效的特点,是一种比较理想的提取真菌基因组DNA作为PCR模板的方法。  相似文献   

8.
通过调整试剂剂量及实验条件与步骤 ,利用WizardTM基因组DNA纯化试剂盒可以稳定、快捷地提取单只轮虫的DNA。以提取的DNA为模板 ,利用COⅠ通用引物 ,扩增并测定了萼花臂尾轮虫 (Brachionuscalyci florus)COⅠ部分基因的序列。与褶皱臂尾轮虫 (B plicatilis)COⅠ基因序列比较结果表明 ,此片断确为轮虫COⅠ基因片断 ,从而证明使用本方法所提取单只轮虫痕量DNA的可靠性  相似文献   

9.
在转基因棉籽的检测中,需要得到合适的DNA模板,以进行PCR扩增。应用CTAB1,CTAB2,KIT,KIT1,SDS等五种DNA模板提取方法提取转基因棉籽中的DNA模板,根据模板DNA的OD260/OD380值,波长扫描,琼脂糖凝胶电泳,3个基因的PCR扩增结果,评价五种DNA模板提取方法的提取效果,发现以KIT1方法提取棉籽中DNA模板效果为好,可用于实际检测中。  相似文献   

10.
以番茄灰霉病生防菌株木霉T-23和链霉菌A的融合子为实验材料,在SDS-CrAB法、改进CTAB法和氯化苄法的基础上加以改进,比较和研究了真菌融合子基因组DNA的提取,找到了一种快速、高效的基因组DNA提取方法,为进一步对融合子进行生防机制和分子生物学水平的研究提供基础。结果表明SDS-CTAB法提取的基因组DNA OD_(260)/OD_(280)为1.909,DNA浓度约为42.0ng/μL,可以满足分子生物学实验的需要。并将提取的基因组DNA直接用于PCR扩增,得到了多态性的RAPD图谱。  相似文献   

11.
Authentication of ancient human DNA results is an exceedingly difficult challenge due to the presence of modern contaminant DNA sequences. Nevertheless, the field of ancient human genetics generates huge scientific and public interest, and thus researchers are rarely discouraged by problems concerning the authenticity of such data. Although several methods have been developed to the purpose of authenticating ancient DNA (aDNA) results, while they are useful in faunal research, most of the methods have proven complicated to apply to ancient human DNA. Here, we investigate in detail the reliability of one of the proposed criteria, that of appropriate molecular behavior. Using real-time polymerase chain reaction (PCR) and pyrosequencing, we have quantified the relative levels of authentic aDNA and contaminant human DNA sequences recovered from archaeological dog and cattle remains. In doing so, we also produce data that describes the efficiency of bleach incubation of bone powder and its relative detrimental effects on contaminant and authentic ancient DNA. We note that bleach treatment is significantly more detrimental to contaminant than to authentic aDNA in the bleached bone powder. Furthermore, we find that there is a substantial increase in the relative proportions of authentic DNA to contaminant DNA as the PCR target fragment size is decreased. We therefore conclude that the degradation pattern in aDNA provides a quantifiable difference between authentic aDNA and modern contamination. This asymmetrical behavior of authentic and contaminant DNA can be used to identify authentic haplotypes in human aDNA studies.  相似文献   

12.
Microsatellites could be of great potential use in the analysis of ancient remains, but so far such analyses have failed to be reproducible mainly because of the high degree of ancient DNA (aDNA) degradation. During PCR, annealing of the primers to the complementary sequences of microsatellites occurs together with cross-annealing of partially degraded repeated sequences. This could create chimeric alleles that do not correspond to the authentic ones. Here we report a simple method for processing aDNA fragments prior to PCR that greatly reduces the production of chimeric alleles. This approach eliminates aDNA molecules broken within the repeats as targets for Taq polymerase by adding poly(A) tails at the 3(') ends of the DNA fragments, which disrupts the homology in the region and thus prevents annealing out of register. We have analyzed one dinucleotide- (D6S337) and two trinucleotide-containing loci (IT15 and SCA1) using poly(A)-tailed and the same untreated aDNA as template. aDNAs were isolated from 28 human remains, 600 and 7000 years of age. In repeated experiments with untreated aDNAs we obtained three to five times more alleles compared to poly(A)-tailed aDNAs. According to our results, modification of aDNA by poly(A) tailing is an efficient pretreatment for accurate genotyping.  相似文献   

13.
A novel method of ancient DNA (aDNA) purification was developed using ion-exchange columns to improve PCR-amplifiable DNA extraction from ancient bone samples. Thirteen PCR-resistant ancient bone samples aged 500-3,300 years were tested to extract aDNA using a recently reported, silica-based aDNA extraction method and an ion-exchange column method for the further purification. The PCR success rates of the aDNA extracts were evaluated for the amplification ability of the fragments of mitochondrial DNA, a high-copy DNA, and amelogenin, a low-copy DNA. The results demonstrate that the further purification of silica-based aDNA extracts using ion-exchange columns considerably improved PCR amplification. We suggest that the ion-exchange column-based method will be useful for the improvement of PCR-amplifiable aDNA extraction, particularly from the poorly preserved, PCR-resistant, ancient samples.  相似文献   

14.
Ancient DNA (aDNA) sequences, especially those of human origin, are notoriously difficult to analyze due to molecular damage and exogenous DNA contamination. Relatively few systematic studies have focused on this problem. Here we investigate the extent and origin of human DNA contamination in the most frequently used sources for aDNA studies, that is, bones and teeth from museum collections. To distinguish contaminant DNA from authentic DNA we extracted DNA from dog (Canis familiaris) specimens. We monitored the presence of a 148-bp human-specific and a 152-bp dog-specific mitochondrial DNA (mtDNA) fragment in DNA extracts as well as in negative controls. The total number of human and dog template molecules were quantified using real-time polymerase chain reaction (PCR), and the sequences were characterized by amplicon cloning and sequencing. Although standard precautions to avoid contamination were taken, we found that all samples from the 29 dog specimens contained human DNA, often at levels exceeding the amount of authentic ancient dog DNA. The level of contaminating human DNA was also significantly higher in the dog extracts than in the negative controls, and an experimental setup indicated that this was not caused by the carrier effect. This suggests that the contaminating human DNA mainly originated from the dog bones rather than from laboratory procedures. When cloned, fragments within a contaminated PCR product generally displayed several different sequences, although one haplotype was often found in majority. This leads us to believe that recognized criteria for authenticating aDNA cannot separate contamination from ancient human DNA the way they are presently used.  相似文献   

15.
Achondroplasia (ACH) is a skeletal disorder (MIM100800) with an autosomal dominant Mendelian inheritance and complete penetrance. Here we report the screening of ancient bone samples for diagnostic ACH mutations. The diagnostic G-->A transition in the FGFR3 gene at cDNA position 1138 was detected in cloned polymerase chain reaction (PCR) products obtained from the dry mummy of the Semerchet tomb, Egypt (first dynasty, approximately 4,890-5,050 BP [before present]), and from an individual from Kirchheim, Germany (Merovingian period, approximately 1,300-1,500 BP), both of which had short stature. However, these mutations were also reproducibly observed in four ancient control samples from phenotypically healthy individuals (false-positives), rendering the reliable molecular typing of ancient bones for ACH impossible. The treatment of a false-positive DNA extract with uracil N-glycosylase (UNG) to minimize type 2 transitions (G-->A/C-->T) did not reduce the frequency of the false-positive diagnostic ACH mutations. Recently, it was suggested that ancient DNA extracts may induce mutations under PCR. Contemporary human template DNA from a phenotypically healthy individual was therefore spiked with an ancient DNA extract from a cave bear. Again, sequences with the diagnostic G-->A transition in the FGFR3 gene were observed, and it is likely that the false-positive G-->A transitions result from errors introduced during the PCR reaction. Amplifications in the presence of MnCl(2) indicate that position 1138 of the FGFR3 gene is particularly sensitive for mutations. Our data are in line with previously published results on the occurrence of nonrandom mutations in PCR products of contemporary human mitochondrial HVRI template DNA spiked with ancient DNA extracts.  相似文献   

16.
Ancient DNA (aDNA) research has long depended on the power of PCR to amplify trace amounts of surviving genetic material from preserved specimens. While PCR permits specific loci to be targeted and amplified, in many ways it can be intrinsically unsuited to damaged and degraded aDNA templates. PCR amplification of aDNA can produce highly-skewed distributions with significant contributions from miscoding lesion damage and non-authentic sequence artefacts. As traditional PCR-based approaches have been unable to fully resolve the molecular nature of aDNA damage over many years, we have developed a novel single primer extension (SPEX)-based approach to generate more accurate sequence information. SPEX targets selected template strands at defined loci and can generate a quantifiable redundancy of coverage; providing new insights into the molecular nature of aDNA damage and fragmentation. SPEX sequence data reveals inherent limitations in both traditional and metagenomic PCR-based approaches to aDNA, which can make current damage analyses and correct genotyping of ancient specimens problematic. In contrast to previous aDNA studies, SPEX provides strong quantitative evidence that C > U-type base modifications are the sole cause of authentic endogenous damage-derived miscoding lesions. This new approach could allow ancient specimens to be genotyped with unprecedented accuracy.  相似文献   

17.
Ancient DNA (aDNA) recovered from archaeobotanical remains can provide key insights into many prominent archaeological research questions, including processes of domestication, past subsistence strategies, and human interactions with the environment. However, it is often difficult to isolate aDNA from ancient plant materials, and furthermore, such DNA extracts frequently contain inhibitory substances that preclude successful PCR amplification. In the age of high-throughput sequencing, this problem is even more significant because each additional endogenous aDNA molecule improves analytical resolution. Therefore, in this paper, we compare a variety of DNA extraction techniques on primarily desiccated archaeobotanical remains and identify which method consistently yields the greatest amount of purified DNA. In addition, we test five DNA polymerases to determine how well they replicate DNA extracted from non-charred ancient plant remains. Based upon the criteria of resistance to enzymatic inhibition, behavior in quantitative real-time PCR, replication fidelity, and compatibility with aDNA damage, we conclude these polymerases have nuanced properties, requiring researchers to make educated decisions as to which one to use for a given task. The experimental findings should prove useful to the aDNA and archaeological communities by guiding future research methodologies and ensuring precious archaeobotanical remains are studied in optimal ways, and may thereby yield important new perspectives on the interactions between humans and past plant communities.  相似文献   

18.
ABSTRACT: BACKGROUND: Next-Generation Sequencing has revolutionized our approach to ancient DNA (aDNA) research, by providing complete genomic sequences of ancient individuals and extinct species. However, the recovery of genetic material from long-dead organisms is still complicated by a number of issues, including post-mortem DNA damage and high levels of environmental contamination. Together with error profiles specific to the type of sequencing platforms used, these specificities could limit our ability to map sequencing reads against modern reference genomes and therefore limit our ability to identify endogenous ancient reads, reducing the efficiency of shotgun sequencing aDNA. RESULTS: In this study, we compare different computational methods for improving the accuracy and sensitivity of aDNA sequence identification, based on shotgun sequencing reads recovered from Pleistocene horse extracts using Illumina GAIIx and Helicos Heliscope platforms. We show that the performance of the Burrows Wheeler Aligner (BWA), that has been developed for mapping of undamaged sequencing reads using platforms with low rates of indel-types of sequencing errors, can be employed at acceptable run-times by modifying default parameters in a platform-specific manner. We also examine if trimming likely damaged positions at read ends can increase the recovery of genuine aDNA fragments and if accurate identification of human contamination can be achieved using a strategy previously suggested based on best hit filtering. We show that combining our different mapping and filtering approaches can increase the number of high-quality endogenous hits recovered by up to 33%. CONCLUSIONS: We have shown that Illumina and Helicos sequences recovered from aDNA extracts could not be aligned to modern reference genomes with the same efficiency unless mapping parameters are optimized for the specific types of errors generated by these platforms and by post-mortem DNA damage. Our findings have important implications for future aDNA research, as we define mapping guidelines that improve our ability to identify genuine aDNA sequences, which in turn could improve the genotyping accuracy of ancient specimens. Our framework provides a significant improvement to the standard procedures used for characterizing ancient genomes, which is challenged by contamination and often low amounts of DNA material.  相似文献   

19.
The analysis of ancient DNA (aDNA) provides archaeologists and anthropologists with innovative, scientific and accurate data to study and understand the past. In this work, ancient seeds, found in the "Mora Cavorso" archaeological site (Latium, Central Italy), were analyzed to increase information about Italian Neolithic populations (plant use, agriculture, diet, trades, customs and ecology). We performed morphological and genetic techniques to identify fossil botanical species. In particular, this study also suggests and emphasizes the use of DNA barcode method for ancient plant sample analysis. Scanning electron microscope (SEM) observations showed seed compact structure and irregular surface but they did not permit a precise nor empirical classification: so, a molecular approach was necessary. DNA was extracted from ancient seeds and then it was used, as template, for PCR amplifications of standardized barcode genes. Although aDNA could be highly degraded by the time, successful PCR products were obtained, sequenced and compared to nucleotide sequence databases. Positive outcomes (supported by morphological comparison with modern seeds, geographical distribution and historical data) indicated that seeds could be identified as belonging to two plant species: Olea europaea L. and Cornus mas L.  相似文献   

20.
Museum curators and living communities are sometimes reluctant to permit ancient DNA (aDNA) studies of human skeletal remains because the extraction of aDNA usually requires the destruction of at least some skeletal material. Whether these views stem from a desire to conserve precious materials or an objection to destroying ancestral remains, they limit the potential of aDNA research. To help address concerns about destructive analysis and to minimize damage to valuable specimens, we describe a nondestructive method for extracting DNA from ancient human remains. This method can be used with both teeth and bone, but it preserves the structural integrity of teeth much more effectively than that of bone. Using this method, we demonstrate that it is possible to extract both mitochondrial and nuclear DNA from human remains dating between 300 BC and 1600 AD. Importantly, the method does not expose the remains to hazardous chemicals, allowing them to be safely returned to curators, custodians, and/or owners of the samples. We successfully amplified mitochondrial DNA from 90% of the individuals tested, and we were able to analyze 1-9 nuclear loci in 70% of individuals. We also show that repeated nondestructive extractions from the same tooth can yield amplifiable mitochondrial and nuclear DNA. The high success rate of this method and its ability to yield DNA from samples spanning a wide geographic and temporal range without destroying the structural integrity of the sampled material may make possible the genetic study of skeletal collections that are not available for destructive analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号