首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 671 毫秒
1.
磷脂转运蛋白的结构及其生物学意义朱全胜,查锡良(上海医科大学生化教研室,上海200032)关键词磷脂转运蛋白,磷脂,细胞膜细胞膜由磷脂双层组成,双分子层中的磷脂分子时刻处在变化之中,不仅表现为磷脂分子从合成部位持续流向细胞膜及膜脂反向流到细胞内,而且...  相似文献   

2.
线粒体不仅在能量代谢中有重要的作用,对其它细胞功能的调控也至关重要,随着对线粒体认知的不断深入,对线粒体膜脂质的研究也越来越受关注。心磷脂(cardiolipin,CL)作为线粒体膜中的特征性脂质,是所有真核生物线粒体的共同组分,其代谢和转运有助于线粒体功能的正常发挥。近年来,心磷脂的转运一直是研究的重点。本文中,我们综述了线粒体心磷脂的合成过程、转运机制和其在细胞功能调控中的作用,同时讨论了心磷脂与相关疾病的关系。  相似文献   

3.
孟冉  阮国良  杨代勤 《生命科学》2014,(10):1004-1011
内质网应激激活的未折叠蛋白反应(unfolded protein response,UPR)是维持机体代谢平衡的重要信号通路。同时,内质网与脂类合成、转运和分解密切相关。近来研究发现UPR对脂类代谢具有调节作用。主要讨论内质网应激激活的UPR对脂类合成、转运和分解的影响及其机制。  相似文献   

4.
线粒体含有约1000种蛋白质,其中99%由细胞核DNA编码,在细胞质核糖体上合成后被分别转运至线粒体的内膜或外膜上、基质或膜间隙中。由众多分子机器组成的线粒体蛋白质转运系统参与了该生物学过程的执行。线粒体DNA编码的13种蛋白质也由该系统转运至线粒体内膜。本文就线粒体蛋白质转运系统中线粒体前体蛋白质的定位分选信号、转运复合物和转运途径作简要介绍。  相似文献   

5.
磷脂转运蛋白的研究   总被引:2,自引:0,他引:2  
磷脂转运蛋白(phospholipidtransferprotein,PLTP)最初发现于线粒体和微粒体膜内,它具有促进肝脏可溶性物质交换和运输的作用,其后发现它对磷脂有较强的结合能力。现已在不同的物种如细菌、植物、动物和人体内分离出十几种磷脂转运蛋...  相似文献   

6.
用荧光素磷脂酰乙醇胺直接测定线粒体内膜外表面pH   总被引:1,自引:0,他引:1  
焦选茂  熊敬维 《动物学报》1997,43(1):96-102
由磷脂极性头部基团和结合水分子组成的氢键网络有利于质子沿膜表面侧向快速扩散。因而在线粒体氧化磷酸化过程中,与呼吸链电子传递相偶联的跨膜转运质子是否滞留于线粒体内膜外表面即成为一个值得探讨的课题。本文采用荧光素磷脂酰乙醇胺标记于线粒体内膜外表面,首次建立了直接测定线粒体内膜外表面pH的方法。标记后,线粒体内膜体呼吸控制率,呼吸链电子传递驱动的质子跨膜转移活性及ATP合成活性下降了近28.0%,11.  相似文献   

7.
大鼠心肌线粒体内、外膜磷脂动态结构的研究   总被引:4,自引:2,他引:2  
我们以DPH为荧光探针.用毫微秒荧光分光光度计测定了大鼠心肌线粒体及线粒体内、外膜的动态微细结构;用HPLC分析了磷脂组成.实验结果提示.完整线粒体膜流动性主要反映了线粒体外膜的运动状态.线粒体内膜微粘度及磷脂分子摇动角大于外膜,扩散速率小于外膜.除去了蛋白质的线粒体内、外膜磷脂脂质体膜流动性无明显差异.提示线粒体内膜的高微粘度与膜中所含有的多量蛋白有关.  相似文献   

8.
细胞膜的双层磷脂结构与功能   总被引:2,自引:0,他引:2  
真核细胞及其亚细胞器如线粒体和内质网等的表面包被着双层磷脂膜结构,即质膜或生物膜。生物膜的功能是将细胞及细胞器与外界微环境隔离,并负责物质转运和信息传递。所有的质膜具有3个共同的结构特征:即连续排列的双层磷脂膜,两层磷脂分子疏水的非极性基团在内部,而其亲水极性基团分别朝向细胞或细胞器的内外表面;膜具有液态流动性;膜上或膜内镶嵌着大量种类和功能各异的蛋白质分子。生物膜的这种结构特征是由磷脂分子的物理化学特征以及细胞的生命特征和功能所决定的。  相似文献   

9.
线粒体转运蛋白质家族(mitochondrial transporter family)等可溶性物质载体(solute carrier,SLC),主要包括SLC25,广泛存在于真核生物线粒体中,负责可溶性物质跨线粒体内膜的转运。SLC25家族成员拥有相似的结构特征、种类繁多的转运底物,并与细胞的多种生理功能密切相关。有研究表明,SLC25家族蛋白质的缺失或突变可导致多种代谢性疾病或神经系统疾病的发生。  相似文献   

10.
线粒体一内质网结构偶联,是指线粒体外膜与内质网膜之间形成的紧密物理连接。通过“募集”数十种蛋白质(mitofusion2、IP3R、grp75、PACS-2等)构成细胞器间的偶联“平台”,将线粒体和内质网功能联系起来。其中,富集磷脂合成酶与磷脂代谢联系密切:形成高钙离子微区,利于细胞器间Ca^2+转运,影响钙信号通路,从而决定细胞命运;调控线粒体形态,尤其是线粒体解离过程;此外,线粒体-内质网结构偶联异常还与细胞凋亡、疾病等有关。  相似文献   

11.
Mitochondrial functions and architecture rely on a defined lipid composition of their outer and inner membranes, which are characterized by a high content of non-bilayer phospholipids such as cardiolipin (CL) and phosphatidylethanolamine (PE). Mitochondrial membrane lipids are synthesized in the endoplasmic reticulum (ER) or within mitochondria from ER-derived precursor lipids, are asymmetrically distributed within mitochondria and can relocate in response to cellular stress. Maintenance of lipid homeostasis thus requires multiple lipid transport processes to be orchestrated within mitochondria. Recent findings identified members of the Ups/PRELI family as specific lipid transfer proteins in mitochondria that shuttle phospholipids between mitochondrial membranes. They cooperate with membrane organizing proteins that preserve the spatial organization of mitochondrial membranes and the formation of membrane contact sites, unravelling an intimate crosstalk of membrane lipid transport and homeostasis with the structural organization of mitochondria.This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

12.
Mitochondria are dynamic organelles whose functional integrity requires a coordinated supply of proteins and phospholipids. Defined functions of specific phospholipids, like the mitochondrial signature lipid cardiolipin, are emerging in diverse processes, ranging from protein biogenesis and energy production to membrane fusion and apoptosis. The accumulation of phospholipids within mitochondria depends on interorganellar lipid transport between the endoplasmic reticulum (ER) and mitochondria as well as intramitochondrial lipid trafficking. The discovery of proteins that regulate mitochondrial membrane lipid composition and of a multiprotein complex tethering ER to mitochondrial membranes has unveiled novel mechanisms of mitochondrial membrane biogenesis.  相似文献   

13.
In eukaryotic cells, complex membrane structures called organelles are highly developed to exert specialized functions. Mitochondria are one of such organelles consisting of the outer and inner membranes (OM and IM) with characteristic protein and phospholipid compositions. Maintaining proper phospholipid compositions of the membranes is crucial for mitochondrial integrity, thereby contributing to normal cell activities. As cellular locations for phospholipid synthesis are restricted to specific compartments such as the endoplasmic reticulum (ER) membrane and the mitochondrial inner membrane, newly synthesized phospholipids have to be transported and distributed properly from the ER or mitochondria to other cellular membranes. Although understanding of molecular mechanisms of phospholipid transport are much behind those of protein transport, recent studies using yeast as a model system began to provide intriguing insights into phospholipid exchange between the ER and mitochondria as well as between the mitochondrial OM and IM. In this review, we summarize the latest findings of phospholipid transport via mitochondria and discuss the implicated molecular mechanisms.   相似文献   

14.
Mitochondrial membranes maintain a specific phospholipid composition. Most phospholipids are synthesized in the endoplasmic reticulum (ER) and transported to mitochondria, but cardiolipin and phosphatidylethanolamine are produced in mitochondria. In the yeast Saccharomyces cerevisiae, phospholipid exchange between the ER and mitochondria relies on the ER-mitochondria encounter structure (ERMES) complex, which physically connects the ER and mitochondrial outer membrane. However, the proteins and mechanisms involved in phospholipid transport within mitochondria remain elusive. Here, we investigated the role of the conserved intermembrane space proteins, Ups1p and Ups2p, and an inner membrane protein, Mdm31p, in phospholipid metabolism. Our data show that loss of the ERMES complex, Ups1p, and Mdm31p causes similar defects in mitochondrial phospholipid metabolism, mitochondrial morphology, and cell growth. Defects in cells lacking the ERMES complex or Ups1p are suppressed by Mdm31p overexpression as well as additional loss of Ups2p, which antagonizes Ups1p. Combined loss of the ERMES complex and Ups1p exacerbates phospholipid defects. Finally, pulse-chase experiments using [(14)C]serine revealed that Ups1p and Ups2p antagonistically regulate conversion of phosphatidylethanolamine to phosphatidylcholine. Our results suggest that Ups proteins and Mdm31p play important roles in phospholipid biosynthesis in mitochondria. Ups proteins may function in phospholipid trafficking between the outer and inner mitochondrial membranes.  相似文献   

15.
Ras proteins are synthesized as cytosolic precursors, but then undergo posttranslational lipid addition, membrane association, and subcellular targeting to the plasma membrane. Although the enzymes responsible for farnesyl and palmitoyl lipid addition have been described, the mechanism by which these modifications contribute to the subcellular localization of Ras is not known. Following addition of the farnesyl group, Ras associates with the endoplasmic reticulum (ER), where palmitoylation occurs in Saccharomyces cerevisiae. The subsequent translocation of Ras from the ER to the plasma membrane does not require the classical secretory pathway or a functional Golgi apparatus. Vesicular and nonvesicular transport pathways for Ras proteins have been proposed, but the pathway is not known. Here we describe a genetic screen designed to identify mutants defective in Ras trafficking in S. cerevisiae. The screen implicates, for the first time, the class C VPS complex in Ras trafficking. Vps proteins are best characterized for their role in endosome and vacuole membrane fusion. However, the role of the class C Vps complex in Ras trafficking is distinct from its role in endosome and vacuole vesicle fusion, as a mitochondrial involvement was uncovered. Disruption of class C VPS genes results in mitochondrial defects and an accumulation of Ras proteins on mitochondrial membranes. Ras also fractionates with mitochondria in wild-type cells, where it is detected on the outer mitochondrial membrane by virtue of its sensitivity to protease treatment. These results point to a previously uncharacterized role of mitochondria in the subcellular trafficking of Ras proteins.  相似文献   

16.
Monomolecular layers of lipid extracts of microsomal, mitochondrial outer and inner membranes, and pure lipid species have been used to measure their interaction with apo- and holocytochrome c. Large differences were observed both with respect to the nature and the lipid specificity of the interaction. The initial electrostatic interaction of the hemefree precursor apocytochrome c with anionic phospholipids is followed by penetration of the protein in between the acyl chains. Apocytochrome c shows similar interactions for all anionic lipids tested. In strong contrast the holoprotein discriminates enormously between cardiolipin for which it has a high affinity and phosphatidylserine and phosphatidylinositol for which it has a much lower affinity. For these latter lipids the interaction with cytochrome c is primarily electrostatic. The cytochrome c-cardiolipin interaction shows several unique features which suggest the formation of a specific complex between the two molecules. These properties account for the preference in interaction of the apoprotein with the lipid extract of the outer mitochondrial membrane over that of the endoplasmic reticulum and the large preference of cytochrome c for the inner over that of the outer mitochondrial membrane lipid extract. Only apocytochrome c was able to induce close contacts between monolayers of the mitochondrial outer membrane lipids and vesicles of mitochondrial inner membrane lipids. Experiments with fragments of both protein and unfolding experiments with cytochrome c revealed that the differences in interaction between the two proteins are mainly due to differences in their tertiary structure and not the presence of the heme group itself. The initial unfolded structure of apocytochrome c is responsible for the high penetrative power of the protein and its ability to induce close membrane contact, whereas the folded structure of cytochrome c is responsible for the specific interaction with cardiolipin. The results are discussed in the light of the apocytochrome c import process in mitochondria and suggest that lipid-protein interactions contribute to targeting the precursor toward mitochondria and are important for its translocation across the outer mitochondrial membrane and the final localization of cytochrome c toward the outside of the inner mitochondrial membrane.  相似文献   

17.
Mitochondria, which are excluded from the secretory pathway, depend on lipid transport proteins for their lipid supply from the ER, where most lipids are synthesized. In yeast, the outer mitochondrial membrane GTPase Gem1 is an accessory factor of ERMES, an ER–mitochondria tethering complex that contains lipid transport domains and that functions, partially redundantly with Vps13, in lipid transfer between the two organelles. In metazoa, where VPS13, but not ERMES, is present, the Gem1 orthologue Miro was linked to mitochondrial dynamics but not to lipid transport. Here we show that Miro, including its peroxisome-enriched splice variant, recruits the lipid transport protein VPS13D, which in turn binds the ER in a VAP-dependent way and thus could provide a lipid conduit between the ER and mitochondria. These findings reveal a so far missing link between function(s) of Gem1/Miro in yeast and higher eukaryotes, where Miro is a Parkin substrate, with potential implications for Parkinson’s disease pathogenesis.  相似文献   

18.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both promitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

19.
Adenine nucleotide uptake was found to be lower in mitochondria from hepatoma 7777, 7800, and 9618A than in the host livers. Moreover, in the fast-growing hepatoma 7777 the sensitivity of the adenine nucleotide translocase to inhibition by carboxyatractylate and bongkrekic acid was considerably decreased. Purification of the ADP/ATP carrier from hepatoma 7777 mitochondria and its reconstitution into an artificial liposome system reversed the abnormal kinetics in that the adenine nucleotide uptake and response to inhibitors were identical in proteoliposome preparations from host liver and tumor mitochondria. Analysis of the lipids of the hepatoma inner mitochondrial membrane indicated considerable differences from normal in the levels of phospholipids and cholesterol. Most striking was the increase in cholesterol and sphingomyelin of the hepatoma 7777 inner membrane. An artificial liposome system containing cholesterol in addition to the standard phospholipids could produce alterations in kinetics of the purified ADP/ATP carrier from heart mitochondria similar to those seen in the hepatoma 7777. In general, these results support the suggestion that alterations in the lipid environment of the inner mitochondrial membrane rather than intrinsic changes in the carrier protein itself produce the aberrant observations of adenine nucleotide translocase activity in hepatoma mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号