首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
肝细胞担负大量的代谢功能,包括脂肪酸的合成与类固醇的代谢。内质网应激反应(ERstressresponse)作为内质网中特殊的机制用以保证内质网内部的稳态和功能正常。有研究指出内质网应激诱导的信号通路及其通路上的关键蛋白参与肝细胞的脂类代谢过程。本文主要讨论内质网应激反应影响肝细胞脂类代谢的机制,以及内质网应激与脂类代谢紊乱疾病的相关性。  相似文献   

2.
吉登仁  齐永芬 《生理学报》2020,72(2):190-204
内质网是蛋白质折叠、转录后修饰和转运的重要细胞器,对维持细胞稳态具有重要作用。多种内外环境刺激能够引起内质网内错误折叠或未折叠蛋白的积累,即形成内质网应激。内质网应激激活未折叠蛋白反应(unfolded protein response,UPR),进而启动一系列下游信号以维持内质网稳态。但持续或过度的内质网应激激活的UPR最终导致细胞凋亡和疾病。近年来,大量研究证据表明,内质网应激参与多种心血管疾病(cardiovascular disease, CVD)的发生和发展,包括缺血性心脏病、糖尿病性心肌病、心力衰竭、动脉粥样硬化、血管钙化、高血压和主动脉瘤等,是治疗多种CVD的重要靶点。本文就内质网应激激活UPR在多种常见CVD中的调控机制以及内质网应激与CVD关系的研究进展作一简要综述。  相似文献   

3.
内质网应激激活的未折叠蛋白反应(Unfolded protein response,UPR)途径在酿酒酵母和哺乳动物细胞中是非常保守的。内质网(Endoplasmic reticulum,ER)是蛋白质合成、折叠和修饰的细胞器,也是贮存钙的主要场所之一。酵母细胞内质网钙平衡与UPR的作用是相互的;两个MAPK途径——HOG途径和CWI途径都是细胞应答内质网应激压力时生存所必需的;重金属镉离子能够激活UPR途径,它通过激活钙离子通道Cch1/Mid1进入细胞影响钙离子的功能。本文结合最新研究进展对酿酒酵母细胞中的两个MAPK途径、镉离子和钙离子稳态与内质网应激激活的UPR途径之间相互关系进行综述。  相似文献   

4.
在真核细胞中,内质网是蛋白质合成、折叠、加工及其质量监控的重要场所。当内质网难以承担蛋白折叠的高负荷时则引发内质网应激(ER stress),激活细胞的未折叠蛋白响应(unfoldedprotein response,UPR)。细胞通过内质网跨膜蛋白ATF6、PERK和IRE1介导的三条极为关键的UPR信号通路,调控下游相关基因的表达,以增强内质网对蛋白折叠的处理能力。因此,UPR通路在细胞的稳态平衡中具有举足轻重的作用,而这一动态过程的调控对于维持机体的正常生理功能至关重要。近来大量研究表明,在哺乳动物中内质网应激与机体的营养感应和糖脂代谢的调控过程密切相关。在肝脏、脂肪、胰岛以及下丘脑等不同的组织器官中,内质网应激均影响代谢通路的调节机制,因此在糖脂代谢紊乱的发生发展中扮演重要的角色。综上所述,进一步深入了解内质网应激引发代谢异常的生理学机制,可以为肥胖、脂肪肝及2型糖尿病等相关代谢性疾病的防治提供新的潜在药物靶点和重要的理论线索。  相似文献   

5.
内质网(endoplasmic reticulum,ER)作为细胞中蛋白成熟的场所,可以很敏感的感受细胞内外环境的变化.当ER内环境改变,细胞就会激活信号应对这些改变,并且重新恢复折叠蛋白的环境.内质网的这种改变就是内质网应激(endophsmic reticulum stress,ERS),而对这种应激作出的反应就是非折叠蛋白反应[1](Unfolded Protein Response,UPR ).UPR至少引起了3种不同的信号通路,这些通路不仅调控分泌途径中大部分基因的表达,而且还广泛影响细胞的各个方面包括蛋白质、氨基酸和脂类的代谢.同时,这3务通路可以综合的调控细胞分泌器官的重塑并根据ERS重新调节细胞的生理活性.就UPR相关的感受器及其信号通路作简要的介绍.  相似文献   

6.
内质网应激介导的细胞凋亡   总被引:16,自引:0,他引:16  
内质网是细胞内重要的细胞器,内质网功能的损伤引起ER应激(ERS).内质网通过激活未折叠蛋白质反应(UPR)以保护由内质网应激所引起的细胞损伤,恢复细胞功能,包括暂停早期蛋白质合成、内质网分子伴侣和折叠酶的转录激活、内质网相关性降解(ERAD)的诱导.长期过强的内质网应激诱导内质网相关性细胞凋亡,清除受损细胞,包括内质网应激诱导CHOP/GADD153表达、JNK的激活以及caspase-12蛋白水解酶的活化等一系列生物学效应.  相似文献   

7.
内质网(Endoplasmic reticulum,ER)是真核细胞细胞器的重要组成部分,主要负责蛋白质合成和翻译后修饰等过程,还参与调控了钙离子储存和脂类合成,具有重要生理功能。冠状病毒感染细胞后,在复制其遗传信息的同时也在合成大量病毒蛋白,造成未折叠/错误折叠蛋白堆积,进而增加内质网工作负担,诱发内质网应激(Endoplasmic reticulum stress,ERS),激活未折叠蛋白反应(Unfolded protein response,UPR),引起一系列信号级联反应,如诱导细胞凋亡等,进而影响病毒复制。本文就冠状病毒感染与ERS及UPR信号通路的研究进展做一综述,为新型抗冠状病毒药物的研发提供新视角。  相似文献   

8.
内质网是蛋白质合成与折叠、维持Ca2+动态平衡及合成脂类和固醇的场所。遗传或环境损伤引起内质网功能紊乱导致内质网应激,激活未折叠蛋白反应。未折叠蛋白反应是一种细胞自我保护性措施,但是内质网应激过强或持续时间过久可引起细胞凋亡。因此,内质网应激与众多人类疾病的发生发展密切相关。最近研究证明,癌症、炎症性疾病、代谢性疾病、骨质疏松症及神经退行性疾病等有内质网应激信号传递参与。然而内质网应激作为一个有效靶点参与各种疾病发挥作用的功能和机制仍然有待进一步研究。在近年来发表的文献基础上对内质网应激与疾病的关系,以及其可能的作用机制进行综述。  相似文献   

9.
10.
铁死亡是2012年被发现的一种新的受调控的细胞死亡方式,其特征是铁依赖的脂质过氧化物的过度积累(可引起细胞死亡的水平).铁代谢、脂代谢、氨基酸代谢等多种调节机制参与了铁死亡的调控.内质网是蛋白质合成、加工、修饰、转运的重要细胞器.应激状态下,未折叠、错误折叠蛋白在内质网内过度积累,即可诱发内质网应激反应.内质网应激是细胞应对外界压力的保护性机制,但持续的、恶劣的应激也能引起细胞死亡.近年来的研究表明,铁死亡与内质网应激密切相关.在癌细胞中,铁死亡诱导剂能同步激活内质网应激反应,内质网应激通路的启动则抑制铁死亡,导致癌细胞产生抗药性.在某些病理情况下,内质网应激通路的激活却加剧了铁死亡的发生.铁死亡和内质网应激之间究竟存在怎样的密切联系,成为目前认识细胞死亡命运的重要科学问题.本文综述了铁死亡的调控通路以及铁死亡与内质网应激相互联系的最新进展,以期为铁死亡相关疾病的发生机制和治疗提供重要的新参考.  相似文献   

11.
未折叠蛋白反应的信号转导   总被引:6,自引:0,他引:6  
李明  丁健  缪泽鸿 《生命科学》2008,20(2):246-252
在内质网中,分泌性蛋白、跨膜蛋白和内质网驻留蛋白折叠成天然构象,经过修饰后,形成有活性的功能性蛋白质。如果蛋白质在内质网内的折叠受到抑制,造成未折叠蛋白聚集,将引起内质网应激。激活未折叠蛋白反应(unfolded protein response,UPR),使蛋白质的生物合成减少,内质网的降解功能增强,从而降低内质网负担,维持细胞内的稳态。如果内质网应激持续存在,则可能诱发细胞凋亡。研究表明,未折叠蛋白反应能在多种肿瘤细胞中发生,并能促进肿瘤细胞的生长。本文对未折叠蛋白反应与肿瘤研究的最新进展进行综述。  相似文献   

12.
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.  相似文献   

13.
The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.  相似文献   

14.
15.
Stress within the endoplasmic reticulum (ER) induces a coordinated response, namely the unfolded protein response (UPR), devoted to helping the ER cope with the accumulation of misfolded proteins. Failure of the UPR plays an important role in several human diseases. Recent studies report that intracellular accumulation of saturated fatty acids (SFAs) and cholesterol, seen in diseases of high incidence, such as obesity or atherosclerosis, results in ER stress. In the present study, we evaluated the effects of perturbations to lipid homeostasis on ER stress/UPR induction in the model eukaryote Saccharomyces cerevisiae . We show that SFA originating from either endogenous (preclusion of fatty acid desaturation) or exogenous (feeding with extracellular SFA) sources trigger ER stress and that ergosterol, the major sterol in yeast, acts synergistically with SFA in this process. This latter effect is connected to ergosterol accumulation within microsomal fractions from SFA-accumulating cells, which display highly saturated phospholipid content. Moreover, treating the cells with the molecular chaperone 4-phenyl butyrate abolishes UPR induction, suggesting that lipid-induced ER stress leads to an overload of misfolded protein that acts, in turn, as the molecular signal for induction of the UPR. The present data are discussed in the context of human diseases that involve lipid deregulation.  相似文献   

16.
The ER is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for maintaining ER homeostasis. Aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR. How the distinct signals from lipid bilayer stress and unfolded proteins are processed by the conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine cross-linking experiments in native membranes to establish its transmembrane architecture in signaling-active clusters. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration independent of the primary cause for ER stress. This suggests that different forms of stress converge in a common, signaling-active transmembrane architecture of Ire1.  相似文献   

17.
18.
Cells constantly adjust the sizes and shapes of their organelles according to need. In this study, we examine endoplasmic reticulum (ER) membrane expansion during the unfolded protein response (UPR) in the yeast Saccharomyces cerevisiae. We find that membrane expansion occurs through the generation of ER sheets, requires UPR signaling, and is driven by lipid biosynthesis. Uncoupling ER size control and the UPR reveals that membrane expansion alleviates ER stress independently of an increase in ER chaperone levels. Converting the sheets of the expanded ER into tubules by reticulon overexpression does not affect the ability of cells to cope with ER stress, showing that ER size rather than shape is the key factor. Thus, increasing ER size through membrane synthesis is an integral yet distinct part of the cellular program to overcome ER stress.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号