首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 146 毫秒
1.
目的:旨在克隆人肥胖(obese,ob)基因的全长cDNA序列,与EGFP重组构建融合蛋白表达载体,并分析其亚细胞水平的定位.方法:提取人脂肪细胞总RNA,采用RT-PCR方法扩增出人ob基因cDNA,并克隆至真核表达载体pEGFP-CI,重组质粒转染NIH-3T3细胞,荧光显微镜分析EGFP-ob融合蛋白的亚细胞定位.结果:克隆的ob基因cDNA为501bp,共编码167个氨基酸,与GenBank公布的人ob基因序列一致,荧光显微镜分析表明,重组的EGFP-ob融合蛋白主要分布于NIT-3T3的细胞质中.结论:成功克隆了人OB基因的cDNA序列,构建人OB基因的真核表达载体pEGFP-CI-ob,融合蛋白EGFP-ob定位于NIH-3T3细胞质中.  相似文献   

2.
小鼠pdd87基因在大肠杆菌中的表达与纯化   总被引:2,自引:0,他引:2  
利用PCR和基因重组技术构建了三个小鼠pdd87基因的原核表达质粒:表达全长cDNA的pET-28a-pdd87质粒;表达PDD87C端404个氨基酸的pET-28a-pdd87-404质粒;表达全长cDNA的pMXB10-pdd87质粒。经IPTG诱导后三种质粒都得到表达。pET-28a-pdd87质粒和pET-28a-pdd87-404质粒表达的蛋白经His6亲和层析纯化后分别获得了带His标签的PDD87蛋白和含C端404个氨基酸的蛋白。pMXB10-pdd87质粒表达的蛋白经几丁质柱亲和层析纯化后获得了纯的PDD87蛋白。  相似文献   

3.
采用PCR技术从人鼻咽上皮组织cDNA文库扩增出人鼻咽组织特异性表达基因NASG基因的编码序列,用Xho I和Sal I酶切NASG基因编码序列的PCR产物及pEGFP-C2载体,产生匹配的粘末端。将回收的pEGFP-C2载体分别与NASG基因编码区酶切片段连接,构建了其编码产物的融合蛋白表达载体pEGFP-C2/NASG,通过脂质体介导分别转染非洲绿猴肾永生化细胞系COS7和鼻咽癌细胞系HNEI,瞬时表达后荧光显微镜观察NASG编码蛋白的活细胞定位,结果表明,NASG编码蛋白在COS7细胞和HNEI细胞的胞浆和胞核中均有表达。  相似文献   

4.
为了研究NAG7基因编码产物的特性和在活细胞内定位与表达,首先利用生物信息学分析NAG7编码蛋白的一般性质并预测其定位,再通过构建增强型绿色荧光蛋白(Enhance green fluorescent protein,EGFP)与NAG7融合基因的真核表达载体pEGFP-C2-NAG7,通过脂质体介导分别转染非洲绿猴肾细胞系COS7和人鼻咽癌细胞系HNE1,瞬时表达后荧光显微镜观察NAG7基因编码蛋白的活细胞内定位及表达,研究结果表明NAG7的编码产物可以COS7细胞中高表达并定位于细胞浆,而在HNE1细胞中虽也定位于胸浆,但仅有极少数细胞存在表达,因此NAG7编码产物在HNE1中的表达差异是否是NPC发生的原因之一有待深入研究。  相似文献   

5.
目的构建SDF-1α基因与绿色荧光蛋白的融合蛋白表达载体,进而观察SDF-1α基因编码蛋白在细胞内的定位情况。方法用EcoRI内切酶从pMD-T18一SDF-1α重组载体中酶切分离SDF-1α基因的完整ORF,构建pEGFP-C1-SDF-1α的融合表达载体,脂质体转染COS-7细胞,并在荧光显微镜下观察表达的融合蛋白。结果SDF-1α基因在COS-7细胞中高效表达,激光共聚焦的结果显示,SDF-1α基因定位在细胞质内。结论成功构建了pEGFP-C1-SDF-1α的融合表达载体,SDF-1α基因主要在细胞质中表达。  相似文献   

6.
【目的】探究荧光蛋白标签对马疱疹病毒I型(Equine herpes virus type 1,EHV-1)gD囊膜蛋白亚细胞定位的影响。【方法】以EHV-1基因组为模板利用PCR扩增gD全基因,分别克隆至pAcGFP1-C1和p Ds Red2-N1质粒,构建p Ac-GFP-gD(GFP-gD)和p Ds-gD-Red(gD-Red)重组质粒;将GFP基因插入gD基因信号肽序列之后并克隆至PVAX-1质粒,构建PVAX-S-GFP-gD’(S-GFP-gD’)重组质粒;将Flag标签序列与gD囊膜蛋白N端序列融合后并克隆至p VAX-1表达载体,构建p VAX-Flag-gD(Flag-gD)重组质粒。将4种不同重组真核表达质粒分别转染BHK-21细胞,通过激光共聚焦显微镜对不同融合蛋白gD进行亚细胞定位。【结果】成功构建4种不同的融合蛋白gD真核表达载体;在BHK-21细胞单独表达时,不同融合蛋白gD绝大部分都定位于高尔基体,极少量定位于细胞核内。【结论】不同插入位点的荧光蛋白标签对gD囊膜蛋白亚细胞定位无明显影响,这对今后研究其它蛋白亚细胞定位提供参考。  相似文献   

7.
目的:构建大鼠大麻素型Ⅰ受体绿色荧光融合蛋白真核表达载体并观察其在细胞中的表达。方法:大鼠CB1基因序列设计引物,以大鼠脑组织为模板扩增CB1基因编码区片段,克隆至增强型绿色荧光蛋白表达载体pEGFP-N3中,构建重组融合蛋白表达载体pCB1-EGFP。将pCB1-EGFP质粒转染HeLa细胞,通过观察EGFP报告基因的表达以及免疫荧光,Western Blot方法鉴定CB1可在真核细胞中过表达情况。结果:构建重组融合蛋白表达载体pCB1-EGFP,单双酶切和测序验证正确。将pCB1-EGFP质粒转染HeLa细胞,荧光显微镜下观察到融合表达的绿色荧光蛋白,且呈胞膜表达。免疫荧光试验也证明重组载体转染后,CB1基因和GFP共同定位于胞膜部分。Western Blot实验证明表达CB1蛋白。结论:成功构建了高表达的CB1-EGFP融合蛋白真核表达载体。  相似文献   

8.
采用生物信息学工具预测与实验相结合的方法得到了一个新的小鼠分泌蛋白基因mBolA1。该基因定位于染色体3F2,cDNA全长为730bp,编码137个氨基酸的蛋白,该蛋白含有一个保守的BolA结构域,等电点为9.05。用RT-PCR方法从鼠的混合cDNA库中克隆到mBolA1。Western blot实验表明mBolA1能从瞬转的COS 7细胞中分泌到细胞培养液中。亚细胞定位显示mBolA1定位于细胞浆,且与高尔基体不共定位,提示它是个非经典分泌途径的分泌蛋白。RT PCR显示mBolA1在组织中广泛表达。它的具体功能有待进一步研究。  相似文献   

9.
【目的】Rv3194c基因编码的是结核分枝杆菌的PDZ信号蛋白,本研究探讨该蛋白的亚细胞定位,为其细胞结合蛋白的筛选奠定基础。【方法】从H37Rv基因组中扩增出编码只含有PDZ结构域的tRv3194c (Rv3194c 1–234 aa)的基因片段,在3′端加T2A和EGFP序列,一并插入真核表达载体构建出pcDNA3.1-tRv3194c-T2A-EGFP。将构建好的质粒瞬时转染L929细胞,并共感染重组痘苗病毒vTF7-3,用间接免疫荧光、流式细胞分选以及Western blotting检测融合蛋白的表达以及亚细胞定位。【结果】成功构建出真核表达载体pcDNA3.1-tRv3194c-T2A-EGFP,瞬时转染L929细胞后融合蛋白tRv3194c定位于线粒体膜上,且重组痘苗病毒vTF7-3的感染有助于靶蛋白表达水平的提高。【结论】Rv3194蛋白的PDZ结构域与线粒体外膜相关蛋白结合,为了解该蛋白在细胞内的致病机制提供重要线索。  相似文献   

10.
利用反向遗传学研究方法对1个预测的拟南芥叶绿体未知功能基因At3g61870编码蛋白进行了亚细胞定位研究.通过克隆At3g61870基因5′端长229 bp的DNA片段,与绿色荧光蛋白(GFP)基因构建重组表达载体pMON530-CP-TP-GFP,经农杆菌介导转化拟南芥.转基因植株的叶肉细胞经激光共聚焦显微镜观察,叶绿素自发荧光与GFP荧光共定位于叶绿体中.结果表明,未知功能基因At3g61870编码的蛋白质为叶绿体蛋白质.  相似文献   

11.
We have isolated a peroxisome-degradation-deficient (pdd) mutant of the methylotrophic yeast Hansenula polymorpha via gene tagging mutagenesis. Sequencing revealed that the mutant was affected in the HpATG8 gene. HpAtg8 is a protein with high sequence similarity to both Pichia pastoris and Saccharomyces cerevisiae Atg8 and appeared to be essential for selective peroxisome degradation (macropexophagy) and nitrogen-limitation induced microautophagy. Fluorescence microscopy revealed that a GFP.Atg8 fusion protein was located close to the vacuole. After induction of macropexophagy, the GFP.Atg8 containing spot extended to engulf an individual peroxisome. In cells of a constructed deletion strain, sequestration of individual organelles was never completed; analysis of series of serial sections revealed that invariably a minor diaphragm-like opening remained. We hypothesize that H. polymorpha Atg8 facilitates sealing of the sequestering membranes during selective peroxisome degradation.  相似文献   

12.
A monoclonal antibody 14F10 was raised against Golgi fractions from Sf21 cells and selected as Golgi specific. Immunohistochemical stainings with the antibody localized the antigen in Golgi cisterns of the cells. The antigen was purified and shown to be a 130-K membrane protein with N-glycans and intrachain disulfide bonds. Amino acid sequencing of its peptide fragments revealed that the antigen contained homologous sequences to those encoded by CG7190 and CG7193 Drosophila melanogaster genes. No possible transmembrane domain existed in these deduced amino acid sequences, while one did in that encoded by CG7195, an adjacent gene to CG7193. Furthermore, 5' and 3' expression sequence tags of LD19434 had been mapped to CG7190 and a downstream region of CG7195, respectively. These findings supported that all of these genes actually composed a single gene, which encoded an orthologous protein to a vertebrate Golgi-resident protein, Golgi apparatus protein 1, also called cysteine-rich FGF receptor, E-selectin ligand-1, or latent TGF-beta complex protein-1. Our results suggested that the Golgi apparatus protein 1 played a critical role in the Golgi cisterns through the animal kingdom.  相似文献   

13.
We have isolated a cDNA coding for beta-COP from Dictyostelium discoideum by polymerase chain reaction using degenerate primers derived from rat beta-COP. The complete cDNA clone has a size of 2.8 kb and codes for a protein with a calculated molecular mass of 102 kDa. Dictyostelium beta-COP exhibits highest homology to mammalian beta-COP, but it is considerably smaller due to a shortened variable region that is thought to form a linker between the highly conserved N- and C-terminal domains. Dictyostelium beta-COP is encoded by a single gene, which is transcribed at moderate levels into two RNAs that are present throughout development. To localize the protein, full-length beta-COP was fused to GFP and expressed in Dictyostelium cells. The fusion protein was detected on vesicles distributed all over the cells and was strongly enriched in the perinuclear region. Based on coimmunofluorescence studies with antibodies directed against the Golgi marker comitin, this compartment was identified as the Golgi apparatus. Beta-COP distribution in Dictyostelium was not brefeldin A sensitive being most likely due to the presence of a brefeldin A resistance gene. However, upon DMSO treatment we observed a reversible disassembly of the Golgi apparatus. In mammalian cells DMSO treatment had a similar effect on beta-COP distribution.  相似文献   

14.
MID-1 is a Saccharomyces cerevisiae gene encoding a stretch-activated channel. Using MID-1 as a molecular probe, we isolated rat cDNA encoding a protein with four putative transmembrane domains. This gene encoded a protein of 541 amino acids. We also cloned the human homologue, which encoded 551 amino acids. Messenger RNA for this gene was expressed abundantly in the testis and moderately in the spleen, liver, kidney, heart, brain, and lung. In the testis, immunoreactivity of the gene product was detected both in the cytoplasm and the nucleus. When expressed in Chinese hamster ovary cells, the gene product was located in intracellular compartments including endoplasmic reticulum and the Golgi apparatus. When microsome fraction obtained from the transfected cells, but not from mock-transfected cells, was incorporated into the lipid bilayer, an anion channel activity was detected. Unitary conductance was 70 picosiemens in symmetric 150 mm KCl solution. We designated this gene Mid-1-related chloride channel (MCLC). MCLC encodes a new class of chloride channel expressed in intracellular compartments.  相似文献   

15.
We have isolated a collection of peroxisome degradation-deficient (Pdd-) mutants of the yeast Hansenula polymorpha which are impaired in the selective autophagy of alcohol oxidase-containing peroxisomes. Two genes, designated PDD1 and PDD2, have been identified by complementation and linkage analyses. In both mutant strains, the glucose-induced proteolytic turnover of peroxisomes is fully prevented. The pdd1 and pdd2 mutant phenotypes were caused by recessive monogenic mutations. Mutations mapped in the PDD1 gene appeared to affect the initial step of peroxisome degradation, namely, sequestration of the organelle to be degraded by membrane multilayers. Thus, Pdd1p may be involved in the initial signalling events which determine which peroxisome will be degraded. The product of the PDD2 gene appeared to be essential for mediating the second step in selective peroxisome degradation, namely, fusion and subsequent uptake of the sequestered organelles into the vacuole. pdd1 and pdd2 mutations showed genetic interactions which suggested that the corresponding gene products may physically or functionally interact with each other.  相似文献   

16.
Norwalk virus is the prototype strain for members of the genus Norovirus in the family Caliciviridae, which are associated with epidemic gastroenteritis in humans. The nonstructural protein encoded in the N-terminal region of the first open reading frame (ORF1) of the Norwalk virus genome is analogous in gene order to proteins 2A and 2B of the picornaviruses; the latter is known for its membrane-associated activities. Confocal microscopy imaging of cells transfected with a vector plasmid that provided expression of the entire Norwalk virus N-terminal protein (amino acids 1 to 398 of the ORF1 polyprotein) showed colocalization of this protein with cellular proteins of the Golgi apparatus. Furthermore, this colocalization was characteristically associated with a visible disassembly of the Golgi complex into discrete aggregates. Deletion of a predicted hydrophobic region (amino acids 360 to 379) in a potential 2B-like (2BL) region (amino acids 301 to 398) near the C terminus of the Norwalk virus N-terminal protein reduced Golgi colocalization and disassembly. Confocal imaging was conducted to examine the expression characteristics of fusion proteins in which the 2BL region from the N-terminal protein of Norwalk virus (a genogroup I norovirus) or MD145 (a genogroup II norovirus) was fused to the C terminus of enhanced green fluorescent protein. Expression of each fusion protein in cells showed evidence for its colocalization with the Golgi apparatus. These data indicate that the N-terminal protein of Norwalk virus interacts with the Golgi apparatus and may play a 2BL role in the induction of intracellular membrane rearrangements associated with positive-strand RNA virus replication in cells.  相似文献   

17.
The addition of mannose residues to glycoproteins and glycolipids in the Golgi is carried out by mannosyltransferases. Their activity depends on the presence of GDP-mannose in the lumen of the Golgi. The transport of GDP-mannose (mannosyl donor) into the Golgi requires a specific nucleotide sugar transport present in the Golgi membrane. Here, we report the identification and functional characterization of the putative GDP-mannose transporter in Aspergillus niger, encoded by the gmtA gene (An17g02140). The single GDP-mannose transporter was identified in the A. niger genome and deletion analysis showed that gmtA is an essential gene. The lethal phenotype of the gmtA could be fully complemented by expressing an YFP-GmtA fusion protein from the endogenous gmtA promoter. Fluorescence studies revealed that, as in other fungal species, GmtA localized as punctate dots throughout the hyphal cytoplasm, representing Golgi bodies or Golgi equivalents. SrgC encodes a member of the Rab6/Ypt6 subfamily of secretion-related GTPases and is predicted to be required for the Golgi to vacuole transport. Loss of function of the srgC gene in A. niger resulted in strongly reduced growth and the inability to form conidiospores at 37°C and higher. Furthermore, the srgC disruption in the A. niger strain expressing the functional YFP-GmtA fusion protein led to an apparent 'disappearance' of the Golgi-like structures. The analysis suggests that SrgC has an important role in maintaining the integrity of Golgi-like structures in A. niger.  相似文献   

18.
曾以水稻蜡质基因5’调控区内一段31 bp 片段为探针,用酵母单杂交法从水稻cDNA 文库中筛选出若干个其编码的蛋白可能与此31 bp 片段结合的cDNA克隆,现将其中的pC73 克隆中的插入片段c73 连接到含His6 的表达载体pET28c( + ) 上,在大肠杆菌BL21(DE3) 中进行诱导表达,并用NiNTA 树脂纯化得到预期的融合表达产物。在合适的诱导表达条件下,融合表达产物主要以可溶形式存在于大肠杆菌细胞内;表达量占到大肠杆菌总蛋白的10 % 左右;经NiNTA 树脂亲和层析纯化得到的产物纯度达95 % ,可供进一步研究之用。  相似文献   

19.
Wheat storage proteins are deposited in the vacuole of maturing endosperm cells by a novel pathway that is the result of protein body formation by the endoplasmic reticulum followed by autophagy into the central vacuole, bypassing the Golgi apparatus. This model predicts a reduced role of the Golgi in storage protein accumulation, which has been supported by electron microscopy observations. To study this issue further, wheat cDNAs encoding three distinct proteins of the endomembrane system were cloned and characterized. The proteins encoded were homologues (i) of the ER translocon component Sec61 alpha, (ii) the vacuolar sorting receptor BP-80 which is located in the Golgi and clathrin-coated prevacuole vesicles (CCV), and (iii) the Golgi COPI coatomer component COP alpha. During endosperm development, the levels of all three mRNAs were highest in young stages, before the onset of storage protein synthesis, and declined with seed maturation. However, the relative mRNA levels of BP-80/Sec61 alpha and the COP alpha/Sec61 alpha were lower during the onset of storage protein synthesis than at earlier stages of endosperm development. These results support previous studies, suggesting a reduced function of the Golgi apparatus in wheat storage protein transport and deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号