首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
【目的】比较7种植物源挥发物反式-β-法尼烯、橙花叔醇、6-甲基-5-庚烯-2-酮、顺-3-己烯乙酸酯、丁香酚、芳樟醇、顺式茉莉酮在玉米田中对天敌昆虫的诱集效果,为利用植物源挥发物对玉米田害虫进行生物防治提供参考。【方法】将7种植物源挥发物制作挥发物引诱球,利用水盆诱捕器、粘虫板和五点取样法调查百株虫量,比较7种植物源挥发物对捕食性和寄生性天敌昆虫的诱集效果。【结果】在7种植物源挥发物的筛选中,橙花叔醇对黄缘蜾蠃Anterhynchium flavomarginatum较其它6种化合物和对照的诱集效果有明显差异,顺式茉莉酮对黑带食蚜蝇Episyrphus balteatus较其它6种化合物和对照的诱集效果有明显差异,反式-β-法尼烯和顺式茉莉酮对龟纹瓢虫Propylaea japonica较其它5种化合物和对照的诱集效果有明显差异;在橙花叔醇和顺式茉莉酮的小区试验中,2种挥发物对龟纹瓢虫和异色瓢虫Harmonia axyridis的诱集效果明显优于对照,橙花叔醇对黑带食蚜蝇和虎斑食虫虻Astochia virgatipes的诱集效果明显优于对照。【结论】在7种植物源挥发物中,对玉米田天敌昆虫的诱集效果,橙花叔醇较好,顺式茉莉酮和反式-β-法尼烯次之。  相似文献   

2.
虫害诱导挥发物的生态调控功能   总被引:2,自引:0,他引:2  
虫害诱导挥发物(herbivore-induced plant volatiles, HIPVs)是植物受害虫胁迫后释放的挥发性物质,是植物与周围环境进行信息交流的媒介。环境中的天敌、害虫和植物通过感知HIPVs所携带的信息,对各自的行为或生理生化反应做出相应的调整。介绍了挥发物的种类及主要的生物合成途径,概括了影响天敌依据HIPVs搜寻寄主和猎物的主要因素。综述了这类挥发性物质对植食性昆虫寄主选择或产卵行为的影响,介绍了植物地上部分和地下部分受害后对彼此间接防御的影响,讨论了多种害虫加害同种植物后对天敌搜寻猎物或寄主行为的影响。另外,作为损伤信号,HIPVs还能诱导同株植物未受害部位和邻近植株的防御反应。最后,对HIPVs在害虫防治中的应用现状及前景作了介绍和讨论。  相似文献   

3.
植物-昆虫间的化学通讯及其行为控制   总被引:11,自引:0,他引:11  
在植物与昆虫间的化学通讯中植物气味物质起着决定性的作用,它调控着昆虫的多种行为,诸如引诱昆虫趋向寄主植物,刺激昆虫取食,引导昆虫选择产卵场所,进行传粉和防御昆虫等。有些植物则当受到食植性昆虫危害时会释出一些引诱害虫天敌的化学信号。这些化学信号是一些挥发性萜类混合物,天敌昆虫就以此来区分受害和未受害植株。尽管目前在害虫综合治理中,昆虫信息素的应用越来越显得比天然植物气味源更受重视,但是必须指出的是,昆虫信息化合物首次成功地使用于植物保护的却是天然植物气味源。在利用植物气味源作害虫测报和防治中,近年来一种简单价廉的粘胶诱捕器己成为多种害虫的标准测报工具。在害虫综合治理中利用植物气味源的技术显然是具有不可估量的潜力。文中提出了利用基因工程技术来改造植物,使植物能释放特定的驱避剂或其它控制昆虫行为的特殊气味物质的新概念。  相似文献   

4.
植物—昆虫间的化学通讯及其行为控制   总被引:84,自引:0,他引:84  
在植物与昆虫间的化学通讯中植物气味物质起着决定性的作用,它调控着昆虫的多种行为,诸如引诱昆虫趋向寄主植物,刺激昆虫取食,引导昆虫选择产卵场所,进行传粉和防御昆虫等。有些植物则当受到食植性昆虫危害时会释出一些引诱害虫天敌的化学信号。这些化学信号是一些挥发性萜类混合物,天敌昆虫就以此来区分受害和未受害植株。尽管目前在害虫综合治理中,昆虫信息素的应用越来越显得比天然植物气味源更受重视,但是必须指出的是,昆虫信息化合物首次成功地使用于植物保护的却是天然植物气味源。在利用植物气味源作害虫测报和防治中,近年来一种简单价廉的粘胶诱捕器已成为多种害虫的标准测报工具。在害虫综合治理中利用植物气味源的技术显然是具有不可估量的潜力。文中提出了利用基因工程技术来改造植物,使植物能释放特定的驱避剂或其它控制昆虫行为的特殊气味物质的新概念。  相似文献   

5.
斜纹夜蛾种群控制的研究概况   总被引:5,自引:0,他引:5  
周忠实 《昆虫知识》2009,46(3):354-361
斜纹夜蛾Spodoptera litura(Fabricius)是重要的农业害虫之一。为了控制斜纹夜蛾,使农作物免受危害,前人研究了化学防治、杀虫灯和性诱捕器诱杀、植物诱集和驱避、转基因抗虫品种以及生物防治对其种群控制作用。化学防治在压制斜纹夜蛾种群暴发、减轻农作物遭受损失方面作出了巨大贡献,但日益增强的抗药性、农药残留造成的环境污染、对天敌的杀伤和人畜安全的影响等问题不断受到关注,人们开始对该害虫的一些新的治理策略进行了探讨。在这些无公害的控制技术中,植物诱集和生物防治是2种值得提倡的有效措施。不少植物源提取物和昆虫生长调节剂对斜纹夜蛾幼虫具有极好的效果,是值得研发的2种新型生物制剂。香芋和蓖麻等诱集作物对斜纹夜蛾有较好的诱集效果,如果能将作物诱集和释放天敌昆虫或病原微生物制剂结合,使之成为一套有效的生态控制体系,将可现实斜纹夜蛾种群的持续控制。  相似文献   

6.
捕食螨化学生态研究进展   总被引:1,自引:0,他引:1  
董文霞  王国昌  孙晓玲  陈宗懋 《生态学报》2010,30(15):4206-4212
捕食螨是重要的生物防治因子。早在20世纪70年代就发现了捕食螨的性信息素,许多研究证明植物挥发物在捕食螨向猎物定位过程中发挥着至关重要的作用,影响捕食螨寻找猎物的植物挥发物来源于未受害植物、机械损伤植物、猎物危害植物、非猎物危害植物。人工合成的植物挥发物组分对捕食螨具有引诱作用,但引诱活性低于虫害诱导植物释放的挥发性混合物。捕食螨的饲养条件、饥饿程度、学习与经验行为等会影响捕食螨对植物挥发物的反应。介绍了信息素与植物挥发物对捕食螨的作用,并讨论了目前存在的问题和研究前景。  相似文献   

7.
昆虫趋色性及诱虫色板的研究和应用进展   总被引:2,自引:0,他引:2  
昆虫与植物之间色彩通讯是彼此信息交流的渠道之一,基于害虫趋色性研发的诱虫板作为一种绿色防控手段,已广泛用于农林害虫的虫情监测、预测预报、大量诱杀以及天敌诱集和指引,效果良好.本文概述了昆虫趋光趋色机理、诱虫板诱杀害虫机制和诱虫板色彩、形状、大小、高度、密度、方向、诱虫时长、植株形态和害虫生理状态等对于诱捕效果的影响,总结了诱虫板在茶园、菜地和大棚等作物环境中的多种实用技术,解析了诱虫板与昆虫性诱剂、植物源引诱剂等配合使用方法及其功效,评价了诱虫板治虫的优缺点并提出改进措施,讨论了诱虫板诱效的评价方法和成本核算.展望了新一代诱虫板研发方向、诱虫板与信息素等产品在有害生物综合治理(IPM)中的集成应用和诱虫板产业前景.  相似文献   

8.
魏佳宁 《昆虫知识》2006,43(1):140-140
植物在植食性昆虫危害的压力下会释放出化合物,而寄生蜂却可以利用这些诱导出的植物挥发物定位寄主。植物叶表面受到创伤都会释放出最常见的绿叶挥发物(green leaf volatiles),而植食性昆虫取食引诱的挥发物会因害虫和受害植物的不同而异。植物在受到害虫造成的创伤后会马上挥发出绿叶性化合物,而一些萜稀类化合物(terpenoids)只有在旧的创伤部位才会大量挥放。那么不同的寄生蜂可以识别这些化合物吗?  相似文献   

9.
关于植物因昆虫取食所诱发的求救信号   总被引:2,自引:0,他引:2  
周新生  严福顺 《昆虫知识》2004,41(6):610-612
虫害会使受害植株释放求救信号 ,后者能招引来致害害虫的天敌。害虫与寄主植物之间这一关系的联因在于致害害虫的唾液酶引起了被害植物代谢过程乃至代谢产物的改变。深入研究植物体的求救信号 ,就会了解昆虫和植物如何协同进化的秘密 ,进而可为寻找害虫防治新资源提供科学的依据。  相似文献   

10.
植食性昆虫的寄主选择机理及行为调控策略   总被引:25,自引:1,他引:24  
陆宴辉  张永军  吴孔明 《生态学报》2008,28(10):5113-5122
害虫是影响农作物生产的重要因素,过度使用化学农药已带来严重的“3R”问题。为了长期有效地控制害虫的危害,基于植食性昆虫寄主选择机制的行为调控策略已成为害虫治理研究的重要方向。天然植物资源(如驱避植物、诱集植物与诱集枝把)、物理模拟材料(如诱集色、驱避色与诱集模型)和人工合成物质(如引诱剂、驱避剂、刺激剂与抑制剂)等研发工作皆取得了突破性的进展。除单一措施的使用外,多种诱集措施协同利用的“诱集+诱集”策略、诱集措施与趋避措施结合使用的“排斥-诱集”策略也已被广泛应用。  相似文献   

11.
Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds which is necessary for avoiding possible damage to non-target plants. Volatile organic compounds (VOCs) emitted by plants likely play an important role in determining which plants attract and are accepted by a prospective arthropod agent. However, current methods to evaluate host plant specificity usually rely on empirical choice and no-choice behavioural experiments, with little knowledge about what chemical or physical attributes are stimulating the insect. We conducted experiments to measure the quantitative and qualitative effects on emission of VOCs caused by simple mechanical damage to leaves of plants known to differ in suitability and attractiveness to a prospective agent. More VOCs were detected from damaged than from undamaged leaves for all three species tested. Discriminant analysis was able to correctly distinguish the taxonomic identity of all plants based on their VOC profiles; however, the VOCs that discriminated species among undamaged leaves were completely different from those that discriminated among damaged leaves. Thus, damaged and undamaged plants present different VOC profiles to insects, which should be considered when conducting host plant specificity experiments. An unacceptable non-target plant, Centaurea cineraria, emitted all except one of the VOCs that were emitted by its preferred host plant, Centaurea solstitialis, indicating the importance of compounds that are repellant in host plant specificity. Centaurea cyanus emitted fewer VOCs than C. solstitialis, which suggests that it lacked some VOCs important for host plant recognition.  相似文献   

12.
对兴安落叶松老龄林落叶松林木死亡格局和死亡木对更新的影响进行了研究 .结果表明 ,丛桦落叶松林和杜香落叶松林的枯立木以中径木占多数 ,赤杨落叶松林主要为中、大径木 ,草类落叶松林主要是中、小径木 .落叶松枯立木主要因火烧、受压和老死而形成 .丛桦落叶松林和赤杨落叶松林掘根倒木较多 .杜香落叶松林和草类落叶松林的倒木以风折为主 .地形、山体走向和盛行风向对树倒方向影响很大 .丛桦落叶松林倒木方向杂乱 ,赤杨落叶松林林木均向东倒下 ,杜香落叶松林和草类落叶松林的掘根木分别向南、东北方倒下 ,两者的风折木倒向随机性较大 .草类落叶松和赤杨落叶松老龄林内 ,倒木更新为 1 8和 40株·m- 2 ,远远高于矿物土基质上 2株·m- 2 的水平 .丛桦落叶松林内倒木和林地上更新均相当好 ,约为 2 8株·m- 2 .杜香落叶松林倒木更新效果不突出 .  相似文献   

13.
Plants damaged by herbivores emit blends of volatile organic compounds (VOCs) that attract the herbivore’s natural enemies. Most work has focussed on systems involving one plant, one herbivore and one natural enemy, though, in nature, plants support multiple herbivores and multiple natural enemies of these herbivores. Our study aimed to understand how different aphid natural enemies respond to aphid-induced VOCs, and whether attraction of the natural enemies that responded to aphid-induced VOCs was altered by simultaneous damage by a chewing herbivore. We used a model system based on Brassica juncea (Brassicaceae), Myzus persicae (Hemiptera: Aphididae) and Plutella xylostella (Lepidoptera: Plutellidae). Ceraeochrysa cubana (Neuroptera: Chrysopidae) did not show preferences for any plant odour, while Cycloneda sanguinea (Coleoptera: Coccinellidae) responded to undamaged plants over air but not to aphid-damaged plants over undamaged plants. Therefore, no further tests were carried out with these two species. Chrysoperla externa (Neuroptera: Chrysopidae) preferred aphid-damaged plants, but not caterpillar-damaged plants, over undamaged plants, and preferred plants damaged by both herbivores over both undamaged plants and aphid-damaged plants. When tested for responses against undamaged plants, Aphidius colemani (Hymenoptera: Braconidae) preferred aphid-damaged plants but not plants damaged by caterpillars. Plants damaged by both herbivores attracted more parasitoids than undamaged plants, but not more than aphid-damaged plants. Thus, multiply damaged plants were equally attractive to A. colemani and more attractive to C. externa than aphid-damaged plants, while C. cubana and C. sanguinea did not respond to aphid-induced VOCs, highlighting how different natural enemies can have different responses to herbivore-damaged plants.  相似文献   

14.
Volatile organic compounds (VOCs) mediate communication between plants and insects. Plants under insect herbivore attack release VOCs either at the site of attack or systemically, indicating within‐plant communication. Some of these VOCs, which may be induced only upon herbivore attack, recruit parasitoids and predatory insects to feed on the attacking insects. Moreover, some plants are able to ‘eavesdrop’ on herbivore‐induced plant volatiles (HIPVs) to prime themselves against impending attack; such eavesdropping exemplifies plant–plant communication. In apple orchards, the beetle Melolontha melolontha L. (Coleoptera: Scarabaeidae) is an important insect pest whose larvae live and feed on roots for about 4 years. In this study, we investigated whether the feeding activity of M. melolontha larvae (1) alters the volatile profile of apple roots, (2) induces the release of HIPVs systemically in the leaves, and (3) whether infested plants communicate to neighbouring non‐infested conspecifics through HIPVs. To answer these questions, we collected constitutive VOCs from intact M9 roots as well as M. melolontha larvae‐damaged roots using a newly designed ‘rhizobox’, to collect root‐released volatiles in situ, without damaging the plant root system. We also collected VOCs from the leaf‐bearing shoots of M9 whose roots were under attack by M. melolontha larvae and from shoots of neighbouring non‐infested conspecifics. Gas chromatography‐mass spectrometry analysis showed that feeding activity of M. melolontha larvae induces the release of specific HIPVs; for instance, camphor was found in the roots only after larvae caused root damage. Melolontha melolontha also induced the systemic release of methyl salicylate and (E,E)‐α‐farnesene from the leaf‐bearing shoots. Methyl salicylate and (E,E)‐α‐farnesene were also released by the shoots of non‐infested neighbouring conspecifics. These phenomena indicate the induction of specific VOCs below‐ and above‐ground upon M. melolontha larvae feeding on apple roots as well as plant–plant communication in apple plants.  相似文献   

15.
Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.  相似文献   

16.
Research on the causes of grassland degradation in the Inner Mongolia has mostly focused on anthropogenic activities. Few studies examined plant interactions during the processes of grassland degradation. In this study, we found that the major constituents of the VOCs from undamaged Artemisia frigida were eucalyptol, camphene, (E)-3-hexen-1-ol acetate, α-terpineol, β-terpineol, (R)-(–)-p-menth-1-en-4-ol, p-cymene and camphor. The content and amount of these VOCs increased when A. frigida was damaged. The VOCs from A. frigida significantly decreased the seedling growth of three common grass species (Elymus dahuricus, Agropyron cristatum and Leymus chinensis) in the Inner Mongolia pastures. The inhibition effect of the VOCs on the tested grass species was significantly greater from damaged than from undamaged plants of A. frigida. Findings from this study suggest that the dominance of A. frigida in degraded grasslands may affect the recovery of other native plant species through mechanisms of allelopathic effect of VOCs emission, especially when under severe disturbance by overgrazing.  相似文献   

17.
兴安落叶松种群格局的分形特征:计盒维数   总被引:37,自引:1,他引:36  
马克明  祖元刚 《植物研究》2000,20(1):104-111
分形维数是分形体填充空间程度的度量,种群格局计盒维数能够揭示出种群格局的空间占据程度及其尺度变化规律,拐点尺度指示出个体聚集尺度。本文应用计盒维数对大兴安岭主要森林类型中兴安落叶松种群空间格局进行的研究表明,兴安落叶松种群格局均具有统计自相似性。各类兴安落叶松林中兴安落叶松种群格局具有较高的计盒维数(> 1.5,接近2),对空间占据程度较高,建群和优势地位明显,空间占据程度的强弱次序为越桔-兴安落叶松(1.829) > 草类-兴安落叶松林(1.720) > 杜鹃-兴安落叶松(1.705)杜香-兴安落叶松林(1.513)。兴安落叶松-白桦林中,兴安落叶松处于劣势伴生地位,种群格局的计盒维数较低(1.371,远离2),空间占据程度低。通过对天然森林类型中兴安落叶松种群格局的计盒维数与兴安落叶松人工林的比较发现,兴安落叶松种群空间占据程度由高至低的次序为兴安落叶松人工林(1.868) > 兴安落叶松天然林(1.692) > 兴安落叶松-白桦林(1.371),揭示出兴安落叶松种群在不同森林类型中地位和作用的差异。  相似文献   

18.
Priming by airborne signals boosts direct and indirect resistance in maize   总被引:1,自引:0,他引:1  
Plants counteract attack by herbivorous insects using a variety of inducible defence mechanisms. The production of toxic proteins and metabolites that instantly affect the herbivore's development are examples of direct induced defence. In addition, plants may release mixtures of volatile organic compounds (VOCs) that indirectly protect the plant by attracting natural enemies of the herbivore. Recent studies suggest that these VOCs can also prime nearby plants for enhanced induction of defence upon future insect attack. However, evidence that this defence priming causes reduced vulnerability to insects is sparse. Here we present molecular, chemical and behavioural evidence that VOC-induced priming leads to improved direct and indirect resistance in maize. A differential hybridization screen for inducible genes upon attack by Spodoptera littoralis caterpillars identified 10 defence-related genes that are responsive to wounding, jasmonic acid (JA), or caterpillar regurgitant. Exposure to VOCs from caterpillar-infested plants did not activate these genes directly, but primed a subset of them for earlier and/or stronger induction upon subsequent defence elicitation. This priming for defence-related gene expression correlated with reduced caterpillar feeding and development. Furthermore, exposure to caterpillar-induced VOCs primed for enhanced emissions of aromatic and terpenoid compounds. At the peak of this VOC emission, primed plants were significantly more attractive to parasitic Cotesia marginiventris waSPS. This study shows that VOC-induced priming targets a specific subset of JA-inducible genes, and links these responses at the molecular level to enhanced levels of direct and indirect resistance against insect attack.  相似文献   

19.
Generally, effects of herbivory on plant fitness have been measured in terms of female reproductive success (seed production). However, male plant fitness, defined as the number of seeds sired by pollen, contributes half of the genes to the next generation and is therefore crucial to the evolution of natural plant populations. This is the first study to examine effects of insect herbivory on both male and female plant reproductive success. Through controlled field and greenhouse experiments and genetic paternity analysis, we found that foliar damage by insects caused a range of responses by plants. In one environment, damaged plants had greater success as male parents than undamaged plants. Neither effects on pollen competitive ability nor pollinator visitation patterns could explain the greater siring success of these damaged plants. Success of damaged plants as male parents appeared to be due primarily to changes in allocation to flowers versus seeds after damage. Damaged plants produced more flowers early in the season, but not more seeds, than undamaged plants. Based on total seed production, male fitness measures from the first third of the season, and flower production, we estimated that damaged and undamaged plants had equal total reproductive success at the end of the season in this environment. In a second, richer environment, damaged and undamaged plants had equal male and female plant fitness, and no traits differed significantly between the treatments. Equal total reproductive success may not be ecologically or evolutionarily equivalent if it is achieved differentially through male versus female fitness. Genes from damaged plants dispersed through pollen may escape attack from herbivores, if such attack is correlated spatially from year to year.  相似文献   

20.
Maize plants respond to feeding by arthropod herbivores by producing a number of secondary plant compounds, including volatile organic compounds (VOCs). These herbivore-induced VOCs are not only known to attract natural enemies of the herbivores, but they may also prime inducible defences in neighbouring plants, resulting in stronger and faster defence responses in these VOC-exposed plants. Among the compounds that cause this priming effect, green leaf volatiles (GLVs) have received particular attention, as they are ubiquitous and rapidly emitted upon damage. In this study, we investigated their effects under realistic conditions by applying specially devised dispensers to release four synthetic GLVs at physiologically relevant concentrations in a series of experiments in maize fields. We compared the VOC emission of GLV-exposed maize plants to non-exposed plants and monitored the attraction of herbivores and predators, as well as parasitism of the caterpillar Spodoptera frugiperda, the most common herbivore in the experimental maize fields. We found that maize plants that were exposed to GLVs emitted increased quantities of sesquiterpenes compared to non-exposed plants. In several replicates, herbivorous insects, such as adult Diabrotica beetles and S. frugiperda larvae, were observed more frequently in GLV-treated plots and caused more damage to GLV-exposed plants than to non-exposed plants. Parasitism of S. frugiperda was only weakly affected by GLVs and overall parasitism rates of S. frugiperda were similar in GLV-exposed and non-exposed plots. The effects on insect presence depended on the distance from the GLV-dispensers at which the plants were located. The results are discussed in the context of strategies to improve biological control by enhancing plant-mediated attraction of natural enemies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号