首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
Herbivory is an important selection pressure in the life history of plants. Most studies use seed or fruit production as an indication of plant fitness, but the impact of herbivory on male reproductive success is usually ignored. It is possible that plants compensate for resources lost to herbivory by shifting the allocation from seed production to pollen production and export, or vice versa. This study examined the impact of herbivory by Helix aspersa on both male and female reproductive traits of a monoecious plant, Cucumis sativus. The effects of herbivory on the relative allocation to male and female flowers were assessed through measurements of the number and size of flowers of both sexes, and the amount of pollinator visitation. We performed two glasshouse experiments; the first looked at the impact of three levels of pre-flowering herbivory, and the second looked at four levels of herbivory after the plants had started to flower. We found that herbivory during the flowering phase led to a significant increase in the number of plants without male flowers. As a consequence there was significantly less pollen export from this population, as estimated by movement of a pollen analog. The size of female flowers was reduced by severe herbivory, but there was no affect on pollen receipt by the female flowers of damaged plants. The decrease in allocation to male function after severe herbivory may be adaptive when male reproductive success is very unpredictable.  相似文献   

2.
McCall AC 《Oecologia》2008,155(4):729-737
While herbivory has traditionally been studied as damage to leaves, florivory – herbivory to flowers prior to seed set – can also have large effects on plant fitness. Florivory can decrease fitness directly, either through the destruction of gametes or through alterations to plant physiology during fruit set, and can also change the appearance of a flower, deterring pollinators and reducing seed set. In order to distinguish between these hypotheses, it is necessary to both damage flowers and add pollen in excess to study the effects of damage on pollen limitation. Very few studies have used this technique over the lifetime of a plant. Here I describe a series of experiments showing the effects of natural and artificial damage on reproductive success in the annual plant Nemophila menziesii (Hydrophyllaceae, sensu lato). I show that natural and artificial petal damage decreased radial symmetry relative to controls and that both types of damage deterred pollinator activity. Both naturally damaged flowers and artificially damaged flowers in the field set fewer fruit or seed relative to undamaged control flowers. Finally, in an experiment crossing artificial petal damage with pollen addition, petal damage alone over the lifetime of this plant decreased female fitness, but only after a threshold of damage was reached. The fitness effect appeared to be direct because there was no detectable effect of pollen addition on the relationship between florivory and fitness. This result implies that both damaged and undamaged plants show similar amounts of pollen limitation and suggests that pollinator-mediated effects contributed little to the negative effects of florivory on female fitness. Florivores may thus be an under-appreciated agent of selection in certain plants, although more experimental manipulation of florivory is needed to determine if it is important over a range of taxa.  相似文献   

3.
Estimates of the effects of herbivory on plant fitness based on female fitness alone may be misleading if plants experience either reduced or increased male fitness. Because there are many plants that produce more flowers following herbivory where seed set is unaffected or reduced, total fitness may be enhanced through the paternal component alone. Here we show that herbivory results in an increase in reproductive success due solely to an increase in paternal fitness in the monocarpic biennial Ipomopsis arizonica. These results suggest that overcompensation may be more common than presently thought, requiring a reexamination of the fitness consequences of herbivory for many plant species.  相似文献   

4.
The roles of herbivory and pollination success in plant reproduction have frequently been examined, but interactions between these two factors have gained much less attention. In three field experiments, we examined whether artificial defoliation affects allocation to attractiveness to pollinators, pollen production, female reproductive success and subsequent growth in Platanthera bifolia L. (Rich.). We also recorded the effects of inflorescence size on these variables. We studied the effects of defoliation on reproductive success of individual flowers in three sections of inflorescence. Defoliation and inflorescence size did not have any negative effects on the proportion of opened flowers, spur length, nectar production or the weight of pollinia. However, we found that hand-pollination increased relative seed production and defoliation decreased seed set in most cases. Interactions between hand-pollination and defoliation were non-significant indicating that defoliation did not affect female reproductive success indirectly via decreased pollinator attraction. Plants with a large inflorescence produced relatively more seeds than plants with a small inflorescence only after hand-pollination. The negative effect of defoliation on relative capsule production was most clearly seen in the upper sections of the inflorescence. In addition to within season effects of leaf removal, defoliated P. bifolia plants may also have decreased lifetime fitness as a result of lower seed set within a season and because of a lower number of reproductive events due to decreased plant size (leaf area) following defoliation. Our study thus shows that defoliation by herbivores may crucially affect reproductive success of P. bifolia.  相似文献   

5.
The effects of floral herbivores on floral traits may result in alterations in pollinator foraging behaviour and subsequently influence plant reproductive success. Fed-upon plants may have evolved mechanisms to compensate for herbivore-related decreased fecundity. We conducted a series of field experiments to determine the relative contribution of floral herbivores and pollinators to female reproductive success in an alpine herb, Pedicularis gruina, in two natural populations over two consecutive years. Experimental manipulations included bagging, hand supplemental, geitonogamous pollination, and simulated floral herbivory. Bumblebees not only avoided damaged flowers and plants but also decreased successive visits of flowers in damaged plants, and the latter may reduce the level of geitonogamy. Although seed set per fruit within damaged plants was higher than that in intact plants, total seed number in damaged plants was less than that in intact plants, since floral herbivory-mediated pollinator limitation led to a sharp reduction of fruit set. Overall, the results suggest that resource reallocation within inflorescences of damaged plants may partially compensate for a reduction in seed production. Additionally, a novel finding was the decrease in successive within-plant bumblebee visits following floral herbivory. This may increase seed quantity and quality of P. gruina since self-compatible species exhibit inbreeding depression. The patterns of compensation of herbivory and its consequences reported in this study give an insight into the combined effects of interactions between floral herbivory and pollination on plant reproductive fitness.  相似文献   

6.
The effect of nectar robbing on plant fitness is poorly understood and restricted to a few plant species. Furthermore, the available studies generally evaluate the effects of nectar robbing on female fitness, disregarding the male component. Here we measured the effects of the nectar-robbing bumblebees on male (measured as pollen analogue flow distance) and female (measured as seed production) reproductive success in the insect-dependent Polygala vayredae, a narrow endemic species from the pre-Pyrenees (Spain). Intense nectar robbing by bumblebees significantly reduced the nectar available to legitimate pollinators in the studied population, and this reduction affected both male and female fitness. Significant differences were observed in fluorescent dye dispersion between robbed and non-robbed flowers within the population. Fluorescent dyes from non-robbed flowers were dispersed to larger distances and over a larger number of flowers when compared with robbed ones. Moreover, significant differences were observed in both fruit set and seed ovule ratios between the two groups, with non-robbed flowers presenting higher reproductive outcomes. However, no effect on seed weight was detected among treatments. The data obtained suggest that in this species, nectar robbing has important indirect and negative effects on plant fecundity, through both male and female functions, due to a modification in the foraging behaviour of legitimate visitors.  相似文献   

7.
Plant mating systems are known to vary within species and some immediate ecological factors have been found to be associated with the geographic distribution of selfing. The environmental condition of the maternal plant may influence the production of selfed seed relative to outcrossed seed. This study investigated the effect of late pollination on the mating system of Kalmia latifolia, a long-lived perennial shrub. A 2 × 2 experimental design was used to determine whether reproductive success declines over the course of the flowering season and whether there was an interaction between pollination time (early vs. late in the season) and pollen type (self-fertilized vs. outcrossed). An interaction of this sort would indicate context-dependent fitness of selfed seeds compared to outcrossed seeds and, thus, show an ecological influence over a plant's mating system. Relative fitness was assessed in terms of female reproductive success. Timing of pollination did not affect abortion of outcrossed seeds; however, delay in pollination increased abortion of selfed seeds by 34.7%. Thus, it appears that plants selectively aborted selfed seeds rather than outcrossed seeds and this selection was more intense at the end of the season. An ecological factor such as time of pollination may affect the mating system of K. latifolia.  相似文献   

8.
Bateman’s principle states that male fitness is usually limited by the number of matings achieved, while female fitness is usually limited by the resources available for reproduction. When applied to flowering plants this principle leads to the expectation that pollen limitation of fruit and seed set will be uncommon. However, if male searching for mates (including pollen dissemination via external agents) is not sufficiently successful, then the reproductive success of both sexes (or both sex functions in hermaphroditic plants) will be limited by number of matings rather than by resources, and Bateman’s principle cannot be expected to apply. Limitation of female success due to inadequate pollen receipt appears to be a common phenomenon in plants. Using published data on 258 species in which fecundity was reported for natural pollination and hand pollination with outcross pollen, I found significant pollen limitation at some times or in some sites in 159 of the 258 species (62%). When experiments were performed multiple times within a growing season, or in multiple sites or years, the statistical significance of pollen limitation commonly varied among times, sites or years, indicating that the pollination environment is not constant. There is some indication that, across species, supplemental pollen leads to increased fruit set more often than increased seed set within fruits, pointing to the importance of gamete packaging strategies in plant reproduction. Species that are highly self-incompatible obtain a greater benefit relative to natural pollination from artificial application of excess outcross pollen than do self-compatible species. This suggests that inadequate pollen receipt is a primary cause of low fecundity rates in perennial plants, which are often self-incompatible. Because flowering plants often allocate considerable resources to pollinator attraction, both export and receipt of pollen could be limited primarily by resource investment in floral advertisement and rewards. But whatever investment is made is attraction, pollinator behavioral stochasticity usually produces wide variation among flowers in reproductive success through both male and female functions. In such circumstances the optimal deployment of resources among megaspores, microspores, and pollinator attraction may often require more flowers or more ovules per flower than will usually be fertilized, in order to benefit from chance fluctuations that bring in large number of pollen grains. Maximizing seed set for the entire plant in a stochastic pollination environment might thus entail a packaging strategy for flower number or ovule number per flower that makes pollen limitation of fruit or seed set likely. Pollen availability may limit female success in individual flowers, entire plants (in a season or over a lifetime), or populations. The appropriate level must be distinguished depending on the nature of the question being addressed.  相似文献   

9.
Although there are many reasons to expect distinct pollinator types to differentially affect a plant's reproductive success, few studies have directly examined this question. Here, we contrast the impact of two kinds of pollinators on reproductive success via male and female functions in the Rocky Mountain columbine, Aquilegia coerulea . We set up pollinator exclusion treatments in each of three patches where Aquilegia plants were visited by either day pollinators (majority bumble bees), by evening pollinators (hawkmoths), or by both (control). Day pollinators collected pollen and groomed, whereas evening pollinators collected nectar but did not groom. Maternal parents, potential fathers and progeny arrays were genotyped at five microsatellite loci. We estimated female outcrossing rate and counted seeds to measure female reproductive success and used paternity analysis to determine male reproductive success. Our results document that bumble bees frequently moved pollen among patches of plants and that, unlike hawkmoths, pollen moved by bumble bees sired more outcrossed seeds when it remained within a patch as opposed to moving between patches. Pollinator type differentially affected the outcrossing rate but not seed set, the number of outcrossed seeds or overall male reproductive success. Multiple visits to a plant and more frequent visits by bumble bees could help to explain the lack of impact of pollinator type on overall reproductive success. The increase in selfing rate with hawkmoths likely resulted from the abundant pollen available in experimental flowers. Our findings highlighted a new type of pollinator interactions that can benefit a plant species.  相似文献   

10.
Pohl N  Carvallo G  Botto-Mahan C  Medel R 《Oecologia》2006,149(4):648-655
Flower herbivory and pollination have been described as interactive processes that influence each other in their effects on plant reproductive success. Few studies, however, have so far examined their joint effects in natural populations. In this paper we evaluate the influence of flower damage and pollination by the hummingbird Oreotrochilus leucopleurus on the fecundity of the Andean monkey flower Mimulus luteus. We performed a 2×2 factorial experiment, with artificial clipping of lower petals and selective exclusion of the hummingbird as main factors. In spite of the relatively low proportion (27.5%) of the variance in seed production accounted for by the full factorial model, artificial damage and hummingbird exclusion, as well as their interaction, were highly significant, indicating nonadditive effects of factors on plant fecundity. In the presence of hummingbirds, undamaged flowers had a seed production that was 1.7-fold higher than for damaged flowers, suggesting that the effect of flower damage on female reproductive success occurs probably as a consequence of hummingbird discrimination against damaged corollas. This result indicates that the impact of flower herbivory on plant fecundity was contingent on the presence or absence of hummingbirds, suggesting that pollinators may indirectly select for undamaged and probably resistant flower phenotypes. A second interaction effect revealed that undamaged flowers produced 78.5% more seeds in the absence of rather than in the presence of O. leucopleurus, raising the question of the ecological mechanism involved. We suggest that the strong territorial behavior exhibited by the bee Centris nigerrima may confine the foraging activities of the remaining bee species to safe sites within exclosures. Overall, our results provide evidence that hummingbird pollination and flower herbivory have interdependent effects on M. luteus fecundity, which indicates that it will be difficult to predict their ecological and evolutionary consequences unless interactions are analyzed in an integrated form.  相似文献   

11.
毛翠雀花花序内的性分配和繁殖成功   总被引:1,自引:0,他引:1  
张新  安宇梦  史长莉  米兆荣  张婵 《广西植物》2021,41(8):1324-1332
两性花植物花序内不同位置的性分配和繁殖成功一般存在差异,通常认为资源竞争、结构效应和交配环境是形成这种差异的主要原因。为了研究雄性和雌性繁殖资源在花序内不同位置间的最优分配问题,该文以青藏高原高寒草甸典型高山植物毛翠雀花为材料,通过比较花序内不同位置的花部特征和种子性状,对其花序内的性分配模式和雌性繁殖成功进行研究,并通过观察传粉者运动特点以及人工去花和补授花粉实验,探讨花序内资源竞争和交配环境对繁殖资源分配的影响。结果表明:(1)不同位置间的雄蕊数、雄蕊鲜重/雌蕊鲜重、花粉数及花粉胚珠比从花序基部到上部显著增加,而雌蕊鲜重和胚珠数逐渐减少,表现出上部花偏雄的性分配;上部花的结籽率显著低于基部花和中部花,不同位置间的发育种子数/果实和发育种子重/果实随着花位置的升高而显著降低,说明基部花具有更佳的雌性繁殖成效。(2)去花处理后,剩余果实的单个种子重/果实显著增加,但发育种子数/果实没有显著增加;而给上部花人工补授异花花粉后,位置间结籽率的差异消失,说明传粉限制而非资源竞争导致了花序内位置依赖的种子生产模式。(3)毛翠雀花雄性先熟的开花特征,以及传粉者苏氏熊蜂从花序基部到上部的定向访花行为,导致了花序内交配环境的变化。综上结果表明,毛翠雀花花序内的性分配和繁殖成功差异是对交配环境适应的结果,对其在高山环境中实现雌雄适合度最优化具有重要意义。  相似文献   

12.
The purpose of this study was to assess variation in male and female reproductive success among the three morphs of the tristylous plant, Lythrum salicaria. Fluorescent dyes were used as pollen analogs to determine whether morphs differ in their abilities to donate and receive pollen, and actual and potential seed set was measured with a hand pollination experiment. Dye transfer among morphs was highly asymmetric, with more frequent transfer from the short-styled morph to the long- and mid-styled morphs. This suggests that shorts are performing better at pollen donation and longs and mids are performing better at pollen receipt. All flowers on 95 plants were hand pollinated to test whether female reproductive success is more pollen-limited in the short-styled morph than in other morphs. Hand-pollinated short-styled plants had significantly higher total seed mass and more seeds per capsule than short controls, whereas hand pollination failed to increase seed set in long and mid morphs. As predicted, short-styled morphs showed significant pollen limitation, whereas seed set in long- and midstyled morphs was not pollen-limited. Thus, in Lythrum salicaria asymmetrical pollen flow generates morph-specific differences in male and female fitness.  相似文献   

13.
I describe temporal patterns of seed production in the andromonoecious lily Zigadenus particulatus. Fruit set per flower and seed set per fruit declined through time within plants. Hand pollination experiments showed that this was not due to increasing pollen limitation. Nutrient supplementation had little effect on seed output, but leaf clipping reduced seed production, especially in late-blooming flowers, and removal of early-blooming flowers increased seed set by later flowers. Thus, the temporal pattern of seed output was due to declining availability of photosynthates. Plants with larger bulbs produced larger inflorescences, a greater proportion of hermaphrodite flowers, more fruits per hermaphrodite flower, and more seeds per fruit, but lost a greater fraction of their initial bulb mass as a consequence of fruiting. After controlling for the effects of bulb mass, plants with larger inflorescences produced a greater proportion of male flowers, and plants with more hermaphrodite flowers produced fewer fruits per hermaphrodite flower and fewer seeds per fruit. Thus, the female fitness gain curve was decelerating. The temporal decline in seed output provides a partial explanation for the parallel decline in allocation to pistils. However, a complete explanation for the pattern of gamete packaging requires an understanding of factors controlling male, as well as female, fitness.  相似文献   

14.
We documented effects of floral variation on seed paternity and maternal fecundity in a series of small experimental populations of wild radish, R. sativus. Each population was composed of two competing pollen donor groups with contrasting floral morphologies and several designated maternal plants. Progeny testing with electrophoretic markers allowed us to measure paternal success. Realized fecundity by each maternal plant and the fraction of those seeds attributable to each pollen donor group were used as outcome variables in path analysis to explore relationships between floral characters (petal size, pollen grain number per flower, and modal pollen grain size), pollinator visitation patterns, and reproductive success. A wide range of pollinator taxa visited the experimental populations, and patterns of discrimination appeared to vary among them. The impact of visitation on male and female reproduction also varied among taxa; visits of small native bees significantly increased paternal success, while those of honey bees reduced male fitness. Only visits by large native bees had discernible effects on recipient fecundity, and, overall, fecundity was not limited by visitation. Maternal plants bearing large-petalled flowers produced fewer flowers during the experiment, reducing their total seed production. In these small populations, postpollination processes (at least in part, compatibility) significantly influenced male and female reproductive success. Variation in pollinator pools occurring on both spatial and temporal scales may act to preserve genetic variation for floral traits in this species.  相似文献   

15.
Recently, some evolutionary biologists have argued that selection on the male component of fitness shapes the evolution of reproductive characters in angiosperms. Floral features, such as inflorescence size, that lead to increased insect visitation without a concomitant increase in seed production are viewed as adaptations to enhance the probability of fathering seeds on other plants. In tests of this “pollen donation hypothesis,” male reproductive success has usually been measured indirectly by flower production, pollinator visitation, or pollen removal. We tested the pollen donation hypothesis directly by quantifying the number of seeds sired by individual genotypes in a natural population of poke milkweed, Asclepias exaltata, in southwestern Virginia. Multiple paternity was low within fruits, a fact which allowed us to use genotypes of progeny arrays to identify a unique pollen parent for 85% of the fruits produced in the population. Seeds sired (male success) and seeds produced (female success) were significantly correlated with flower number per plant (for male success, r = 0.32, P > 0.05; for female success, r = 0.66, P > 0.001). While the number of pollinaria removed, the usual estimator of male success in milkweeds, was highly correlated with numbers of seeds sired (r = 0.47; P > 0.001), it was even more highly correlated with numbers of seeds produced (r = 0.71, P > 0.001). Analysis of functional gender indicated that plants with many flowers did not behave primarily as males. In fact, individuals with the highest total reproductive success contributed equally as males and females. Furthermore, estimates of gender based on numbers of flowers produced or pollinaria removed overestimated the number of functional males in the population. In pollen-limited species, such as many milkweeds, proportional increases in both male and female reproductive success indicate the potential for selection to shape the evolution of large floral displays through both male and female functions.  相似文献   

16.
Krupnick  Gary A.  Weis  Arthur E. 《Plant Ecology》1998,134(2):151-162
Flower-feeding insects may influence the reproductive behavior of their host plant. In plants with labile sex expression, the ratio of maternal to paternal investment may change in response to damage, an effect that goes beyond the direct reduction of plant gametes. We examined the effects of floral herbivory by the beetle Meligethes rufimanus (Nitidulidae) on the ratio of hermaphroditic flowers to male flowers in an andromonoecious shrub, Isomeris arborea (Capparaceae) in southern California. Plants exposed to herbivory had a greater rate of flower bud abortion than those protected from herbivory. Exposed plants produced a greater proportion of hermaphroditic flowers to male flowers, although damaged inflorescences still produced fewer fruit. An additional manipulative experiment showed that the removal of pistils on inflorescences led to an increase in the proportion of hermaphroditic flowers. This suggests that the presence of fruit may lead to pistil suppression in developing flowers. Adaptive responses to herbivory which favor andromonoecy thus include the continued production of hermaphroditic flowers when floral damage is high (and hence low fruit set), and a switch to male flower production when floral damage is low (and fruit production increases). The consequences of an altered six ratio induced by insect herbivores may lead to indirect effects on both the male and female reproductive success of this plant.  相似文献   

17.
Floral traits that increase attractiveness to pollinators are predicted to evolve through selection on male function rather than on female function. To determine the importance of male-biased selection in dioecious Wurmbea dioica, we examined sexual dimorphism in flower size and number and the effects of these traits on pollinator visitation and reproductive success of male and female plants. Males produced more and larger flowers than did females. Bees and butterflies responded to this dimorphism and visited males more frequently than females, although flies did not differentiate between the sexes. Within sexes, insect pollinators made more visits to and visited more flowers on plants with many flowers. However, visits per flower did not vary with flower number, indicating that visitation was proportional to the number of flowers per plant. When flower number was experimentally held constant, visitation increased with flower size under sunny but not overcast conditions. Flower size but not number affected pollen removal per flower in males and deposition in females. In males, pollen removal increased with flower size 3 days after flowers opened, but not after 6 days when 98% of pollen was removed. Males with larger flowers therefore, may have higher fitness not because pollen removal is more complete, but because pollen is removed more rapidly providing opportunities to pre-empt ovules. In females, pollen deposition increased with flower size 3 days but not 6 days after flowers opened. At both times, deposition exceeded ovule production by four-fold or more, and for 2 years seed production was not limited by pollen. Flower size had no effect on seed production per plant and was negatively related to percent seed set, implying a tradeoff between allocation to attraction and reproductive success. This indicates that larger flower size in females is unlikely to increase fitness. In both sexes, gamete production was positively correlated with flower size. In males, greater pollen production would increase the advantage of large flowers, but in females more ovules may represent a resource cost. Selection to increase flower size and number in W. dioica has probably occurred through male rather than female function. Received: 15 June 1997 / Accepted: 12 February 1998  相似文献   

18.
为了寻找保护和恢复甘南红景天种群的有效途径,本文分析了甘南红景天的繁育系统、生殖过程、开花物候特征及影响生殖成功的主要因子.结果表明:甘南红景天为雌雄异株,雄花在花芽分化初期为两性植株,但随着花的不断发育,雌蕊的胚囊发育到一定阶段时败育,两性植株基本仅执行雄性功能,种群繁殖为异交,以风媒传粉方式为主,种群花期出现在全年降雨和气温较高的季节.6月初现蕾,6月中旬开花,7月上旬进入盛花期,花期在36 d左右,8月下旬果实成熟.两性植株略早于雌花开放,花期(10.2 d)大于雌性植株(8.4 d).由于部分雌花不易授粉,部分花蕾、胚珠损失,1~3年的幼龄植株几乎不开花结实,群落中只有11%的植株开花结实,种子自然繁殖率极低,约为2%.从花蕾到开花,雌性单株有20.0%~25.1%的花蕾损失; 从开花到结实,单株51.1%~65.0%的花败育;至种子成熟,仅10.1%~21.0%的胚珠发育成种子.雌性单株平均种子产量为158.1粒,人工条件下种子发芽率为81.5%,幼苗第一年的成活率为36.0%.表明种子质量不是导致甘南红景天濒危的原因,而花粉限制、种子产量和幼苗的成活率是真正影响其生殖成功和导致濒危的主要生殖生态学因素.  相似文献   

19.
Background and Aims Floral traits are essential for ensuring successful pollination and reproduction in flowering plants. In particular, style and anther positions are key for pollination accuracy and efficiency. Variation in these traits among individuals has been well studied, but less is known about variation within flowers and plants and its effect on pollination and reproductive success.Methods Style deflexion is responsible for herkogamy and important for pollen deposition in Passiflora incarnata. The degree of deflexion may vary among stigmas within flowers as well as among flowers. We measured the variability of style deflexion at both the flower and the plant level. The fitness consequences of the mean and variation of style deflexion were then evaluated under natural pollination by determining their relationship to pollen deposition, seed production and average seed weight using structural equation modelling. In addition, the relationship between style deflexion and self-pollen deposition was estimated in a greenhouse experiment.Key Results We found greater variation in style deflexion within flowers and plants than among plants. Variation of style deflexion at the flower and plant level was positively correlated, suggesting that variability in style deflexion may be a distinct trait in P. incarnata. Lower deflexion and reduced variation in that deflexion increased pollen deposition, which in turn increased seed number. However, lower styles also increased self-pollen deposition. In contrast, higher deflexion and greater variability of that deflexion increased variation in pollen deposition, which resulted in heavier seeds.Conclusions Variability of style deflexion and therefore stigma placement, independent from the mean, appears to be a property of individual P. incarnata plants. The mean and variability of style deflexion in P. incarnata affected seed number and seed weight in contrasting ways, through the quantity and potentially quality of pollen deposition. This antagonistic selection via different fitness components may maintain diverse style phenotypes.  相似文献   

20.
Aims Within inflorescences of sexually reproducing hermaphrodites, the production of ovules, fruits and seeds commonly declines from basal (early-opening) to distal (late-opening) flowers, while pollen production remains constant or only changes slightly, with the result that distal (late-opening) flowers become functionally male. However, few empirical studies have specifically examined whether or not changes in allocation to pollen production actually lead to changes in the number of seeds sired, a more direct measure of male fitness. In pseudogamous apomicts, fitness depends on the number of seeds produced; thus, a contrasting pattern of variation in the pollen-to-ovule (P/O) ratio within inflorescences might be expected.Methods We investigated floral sex allocation and reproductive success within racemes of Hosta ventricosa, a pseudogamous apomictic hermaphrodite possessing flowers that open acropetally. We quantified variations in pollen number, ovule number, the P/O ratio and fruit and seed production, from 2007 to 2011, among flowers within racemes of four populations of H. ventricosa in southwest China. Ecological causes for fruit and seed production were evaluated by observing patterns of pollen deposition, flower removal and supplemental pollination.Important findings Pollen number, ovule number and the P/O ratio declined from basal-to-distal positions in all sampled populations (years). Fruit and seed production decreased distally in most populations (years). Low fruit and seed set of distal flowers was not due to pollen limitation because pollen deposition never declined distally and the low fruit and seed set of distal flowers remained even after supplementary pollination was provided. The flower-removal experiment indicated that inter-fruit competition for resources among flowers was common. The low P/O ratio of distal flowers in H. ventricosa might be favored because they were unable to obtain fitness by donating pollen and siring seeds on other plants. Our study may help to understand the adaptive significance of sex allocation among flowers within inflorescences of sexually reproducing hermaphrodites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号