首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 200 毫秒
1.
中亚滨藜甜菜碱醛脱氢酶基因的表达特性   总被引:5,自引:0,他引:5  
根据已发表的几种植物的甜菜碱醛脱氢酶(BADH)基因的同源保守区设计了一对兼并引物,通过RT-PCR方法从中亚滨藜中扩增出BADH基因的近5′端序列,共395bp,与菠菜、山菠菜、甜菜、千穗谷、大麦的BADHcDNA相应片段的同源性较高,以此片段为探针,对中亚滨藜的基因组进行Southern杂交分析,证明该基因可能是单拷贝的。Northern印迹杂交结果表明:NaCl250mmol/L处理的植株的BADHmRNA水平比对照植株约高2倍。说明中亚滨藜中BADH基因的表达受盐诱导。  相似文献   

2.
菠菜甜菜碱醛脱氢酶基因在烟草中的表达   总被引:74,自引:0,他引:74  
质粒pLS9含有1.5kb的编码菠菜甜菜碱醛脱氢酶(BADH)基因。经限制酶切后克隆到植物表达载体的35S启动子和PolyA终止子之间。经农杆菌介导转化烟草,获得90多株抗卡那霉素再生植株。经PCR检测证明60%以上再生植株含有BADH基因。转基因植株经Western blot,BADH酶活性测定,BADH酶活性特异性染色法检查和耐盐性分析,证明菠菜BADH基因在烟草正常表达。在叶绿体和胞液中均有BADH酶存在。转基因植株能耐较高浓度盐。  相似文献   

3.
根据我们实验室已发表的植物甜菜碱醛脱氢酶基因(BADH)的同源保守区设计引物,通过RT—PCR扩增获得了由1503个核苷酸组成的盐穗木BADH基因开放阅读框,推测该基因编码500个氨基酸,分子量约为54.49kDa的多肽。推测的盐穗木BADH氨基酸序列中包含一段甜菜碱醛脱氢酶中高度保守的十肽序列(VTLELGGKSP)以及与酶功能有关的半胱氨酸残基(Cys)。序列比对结果显示,盐穗木BADH与盐地碱蓬、中亚滨藜、盐爪爪以及菠菜等的核苷酸序列同源性在81%以上,与水稻的同源性也达到68%。半定量RT—PCR分析结果表明,盐穗木BADH基因的表达受盐胁迫诱导,推测BADH可能与盐穗木具有较强的耐盐能力有关。  相似文献   

4.
根据已发表的几种藜科植物甜菜碱醛脱氢酶(BADH) 基因的同源保守区设计了一对引物, 采用RT-PCR 方法从盐生植物盐爪爪( Kalidium foliatum) 中扩增出BADH 基因的1 个开放阅读框架, 其核苷酸序列长1 503 bp , 推测的氨基酸序列全长为500 个氨基酸残基。核苷酸序列与藜科几种盐生植物如滨藜、碱蓬、菠菜、山菠菜和甜菜等的同源性为81% , 与甜土植物水稻的同源性为69%。氨基酸序列与以上两类植物(盐生植物和甜土植物) 的同源性比对为80% 和71% , 说明BADH 基因在藜科盐生植物中是一种较高保守的基因。BADH 基因编码的多肽在高等植物中行使重要的功能。用不同浓度的NaCl 胁迫处理盐爪爪植株, BADH mRNA 的表达水平比对照植株高, 说明盐爪爪BADH 基因的表达受盐诱导, 间接说明甜菜碱醛脱氢酶催化合成的甜菜碱作为渗透调节的小分子物质, 它的积累与盐胁迫存在紧密关联, 本研究为进一步从生理和分子水平阐明盐爪爪的耐盐机制提供一定的参考。  相似文献   

5.
根据已发表的几种藜科植物甜菜碱醛脱氢酶(BADH)基因的同源保守区设计了一对引物,采用RT-PCR方法从盐生植物盐爪爪(Kalidium foliatum)中扩增出BADH基因的1个开放阅读框架,其核苷酸序列长1503bp,推测的氨基酸序列全长为500个氨基酸残基。核苷酸序列与藜科几种盐生植物如滨藜、碱蓬、菠菜、山菠菜和甜菜等的同源性为81%,与甜土植物水稻的同源性为69%。氨基酸序列与以上两类植物(盐生植物和甜土植物)的同源性比对为80%和71%,说明BADH基因在藜科盐生植物中是一种较高保守的基因。BADH基因编码的多肽在高等植物中行使重要的功能。用不同浓度的NaCl胁迫处理盐爪爪植株,BADHmRNA的表达水平比对照植株高,说明盐爪爪BADH基因的表达受盐诱导,间接说明甜菜碱醛脱氢酶催化合成的甜菜碱作为渗透调节的小分子物质,它的积累与盐胁迫存在紧密关联,本研究为进一步从生理和分子水平阐明盐爪爪的耐盐机制提供一定的参考。  相似文献   

6.
梭梭甜菜碱醛脱氢酶基因克隆及序列分析   总被引:4,自引:1,他引:3  
采用RT-PCR、RACE等方法从超旱生、耐盐植物梭梭(Haloxylon ammodendron)中扩增出BADH基因的cDNA序列(命名为HaBADH),其开放阅读框为1 503 bp,推测的氨基酸序列全长为500个氨基酸残基,并含有醛脱氢酶所具有的高度保守的十肽(VTLELGGKSP)以及与酶功能有关的半胱氨酸残基(C).其核苷酸序列与藜科几种盐生植物如盐爪爪(Kalidium foliatum)、中亚滨藜(Atriplex centralasiatica)、三角叶滨藜(Atriplex triangularis)、菠菜(Spinacia oleracea)、山菠菜(Atriplex hortensis)和甜菜(Beta vulgaris)等的相似性均在85%以上,推导编码蛋白的氨基酸序列一致性均在87%以上,表明BADH基因在藜科植物中是一种比较保守的基因.研究结果为进一步从分子水平探明梭梭的抗旱、耐盐机制,挖掘并利用植物抗逆基因奠定基础.  相似文献   

7.
两种滨藜甜菜碱醛脱氢酶基因的克隆及序列分析   总被引:2,自引:0,他引:2  
甜菜碱醛脱氢酶(Betaine aldehyde dehydrogenase,BADH)对非生物胁迫下植物渗透调节物质的合成和积累具有重要作用。分别从异苞滨藜和鞑靼滨藜两种盐生植物中分离到了BADH基因。序列分析表明,BADH全长均为1 507bp,编码501个氨基酸,两种BADH序列具有较高的相似性。甜菜碱醛脱氢酶的克隆为植物的基因转化及其功能分析奠定了基础。  相似文献   

8.
甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达   总被引:16,自引:1,他引:15  
采用基因枪法将山菠菜甜菜碱醛脱氢酶 (BADH)基因导入小麦 (TriticumaestivumL .)品种 ,并且得以表达。该基因由玉米Ubi1启动子控制。在盐胁迫条件下 ,多数转基因植株叶片的BADH活性比受体亲本提高 1~ 3倍 ,部分植株相对电导率比亲本明显低 ,表明转基因植株的细胞膜在胁迫时有受损较轻倾向。PCR和Southern杂交分析证实外源BADH基因已插入小麦基因组 ,平均转化频率为 4.1%。  相似文献   

9.
甜菜碱醛脱氢酶(BADH)是渗透调节剂甜菜碱生物合成中涉及的第2个酶,我们将含盐生植物山菠菜BADH基因的植物双元表达载体经基因枪法导入水稻,经盐胁迫筛选得到转化植株,经RAPD检测全部阳性,在随机选择的10株转化植株中全部测出BADH活性,而对照未见.Northern杂交表明,其中7株为阳性.在含0.5%氯化钠的盐池中大多数转基因植株生长基本正常,结实率约为10%,而对照受盐害现象显著,几乎全部枯萎.  相似文献   

10.
农杆菌介导的甜菜碱醛脱氢酶基因转化甘蓝的研究   总被引:1,自引:0,他引:1  
为获得抗旱和耐盐性提高的甘蓝植株,通过农杆菌介导法将来自菠菜的甜菜碱醛脱氢酶(Betaine Aldehyde Dehydrogenase,BADH)基因导人甘蓝品系03079,并采用正交设计优化影响转化效率的参数,建立了甘蓝高效转化体系,即以侵染液为AA液体培养基、乙酰丁香酮200μmol L^-1、侵染时间20min、共培养天数2d为最佳转化参数,在该条件下转化率可达54.26%。转基因甘蓝植株经PCR检测初步说明BADH基因已导入甘蓝中,Southern杂交证明BADH基因已稳定整合到甘蓝基因组中。甜菜碱脱氢酶活性测定结果表明,经过聚乙二醇(PEG)、NaCI和干旱处理的转基因甘蓝植株的BADH酶的平均比活力范围在2.1Umg^-1~3.6Umg^-1之间,不同处理的转基因株系酶比活力显著高于相应的未转基因株系。膜的相对电导率测定结果说明,经过PEG、NaCl和干旱处理的转基因植株平均相对电导率在16.2%~32.6%之间,耐逆境胁迫处理后的绝大多数转基因株系相对电导率显著低于相应对照。多数转BADH基因甘蓝植株在干旱、盐胁迫和PEG胁迫条件下生长势强于未转基因植株,表现为大多数转基因株系株高增幅显著高于对照,说明BADH基因的导入能提高转基因甘蓝植株的抗旱和耐盐性。我们获得的抗旱和耐盐能力明显提高的转基因甘蓝植株,可作为培育耐盐、抗旱甘蓝品种的种质材料。  相似文献   

11.
菠菜甜菜碱醛脱氢酶基因的克隆和序列分析   总被引:7,自引:0,他引:7  
以耐盐的菠菜mRNA为模板,经反转录合成甜菜碱醛脱氢酶(BADH)基因第一链cDNA。在人工合成的两端引物引导下,通过多聚酶链式反应(PCR),扩增获得双链cDNA。把重组有BADH基因的pUC19转化至E.coli DH5α菌株,亚克隆后测定了基因的全序列。所得到的BADH基因全长序列为1491bp,编码497个氨基酸。与文献报道的相比较,核苷酸序列同源性99.8%,氨基酸序列同源性达99.6%。在此基础上,构建了BADH基因的高等植物表达载体。  相似文献   

12.
13.
We isolated cDNAs encoding betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) from the salt-tolerant Poaceae, Zoysia tenuifolia by polymerase chain reactions. Zoysia betaine aldehyde dehydrogenase 1 (ZBD1) is 1892bp long and codes for 507 amino acids. The deduced amino acid sequence of ZBD1 is 88% similar to the sequence of rice BADH. Ten cDNA clones were isolated from a cDNA Library of salt-treated Z. tenuifolia by using the ZBD1 fragment as a probe. The proteins coded in some clones were more homologous to BBD2, the cytosolic BADH of barley, than to ZBD1. To investigate their enzymatic properties, ZBD1 and spinach BADH were expressed in Escherichia coli and purified. The optimal pH of ZBD1 was 9.5, which was more alkaline than that of spinach BADH. ZBD1 was less tolerant to NaCl than spinach BADH. ZBD1 showed not only BADH activity but also aminoaldehyde dehydrogenase activity. The Km values of ZBD1 for betaine aldehyde, 4-aminobutyraldehyde (AB-ald), and 3-aminopropionaldehyde (AP-ald) were 291, 49, and 4.0 microM, respectively. ZBD1 showed higher specific activities for AB-ald and AP-ald than did spinach BADH.  相似文献   

14.
Li QL  Gao XR  Yu XH  Wang XZ  An LJ 《Biotechnology letters》2003,25(17):1431-1436
cDNA encoding betaine aldehyde dehydrogenase (BADH) from the halophyte Suaeda liaotungensis has been cloned, sequenced and expressed in tobacco (Nictiana tabacum 89). The full-length cDNA is 1506 base pairs (bp) long and encodes a 502 amino-acid polypeptide. The cDNA fragment coding for the mature enzyme was cloned into vector pCAMBIA-1301 for expression in tobacco. Southern blotting analysis showed that that the Badh gene was integrated into the genome of tobacco. Tobacco expressing BADH survived on MS medium containing 200 mM NaCl, whereas the untransformed plants turned yellow after about 20 d and died.  相似文献   

15.
16.
黄瓜扩张蛋白基因CsEXP10的克隆与表达   总被引:5,自引:0,他引:5  
以cDNA-AFLP差示片段的序列(CO434610)为基础,通过RACE延伸和与EST序列拼接,得到长度为1191bp的、包含完整3’末端的CsEXP10基因cDNA序列。Southern杂交结果表明,该基因在黄瓜基因组中以单拷贝形式存在.RT-PCR检测发现,该基因不在根、茎和叶中表达,而在果实中表达.Northern杂交显示,该基因在授粉后迅速生长的幼果中丰量表达,而在幼小子房、开花当天的未授粉子房和生长停止的果实中不表达,由此推测CsEXP10基因与授粉后黄瓜果实膨大生长有密切关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号