首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Preservation of the conformation of recombinant gp120 in an adjuvant, enabling it to elicit conformation-dependent, epitope-specific, broadly neutralizing antibodies, may be critical for the development of any gp120-based human immunodeficiency virus type 1 (HIV-1) vaccine. It was hypothesized that recombinant gp120 complexed with recombinant CD4 could stabilize the conformation-dependent neutralizing epitopes and effectively deliver them to the immune system. Therefore, a soluble CD4-gp120 complex in Syntex adjuvant formulation was tested with mice for its ability to induce neutralizing anti-gp120 antibody responses. Seventeen monoclonal antibodies (MAbs) were generated and characterized. Immunochemical studies, neutralization assays, and mapping studies with gp120 mutants indicated that the 17 MAbs fell into three groups. Four of them were directed to what is probably a conformational epitope involving the C1 domain and did not possess virus-neutralizing activities. Another four MAbs bound to V3 peptide 302-321 and exhibited cross-reactive gp120 binding and relatively weak virus-neutralizing activities. These MAbs were very sensitive to amino acid substitutions, not only in the V3 regions but also in the base of the V1/V2 loop, implying a conformational constraint on the epitope. The last group of nine MAbs recognized conformation-dependent epitopes near the CD4 binding site of gp120 and inhibited the gp120-soluble CD4 interaction. Four of these nine MAbs showed broadly neutralizing activities against multiple laboratory-adapted strains of HIV-1, three of them neutralized only HIVIIIB, and the two lower-affinity MAbs did not neutralize any strain tested. Collectively, the results from this study indicate that immunization with the CD4-gp120 complex can elicit antibodies to conformationally sensitive gp120 epitopes, with some of the antibodies having broadly neutralizing activities. We suggest that immunization with CD4-gp120 complexes may be worth evaluating further for the development of an AIDS vaccine.  相似文献   

2.
A human immunoglobulin G1 lambda monoclonal antibody (MAb), 697-D, was developed that recognizes the V2 region of human immunodeficiency virus type 1 (HIV-1) gp120. Substitutions at amino acid positions 176/177, 179/180, 183/184, and 192 to 194 in the V2 loop of gp120 each completely abolished the binding capacity of 697-D in an enzyme-linked immunosorbent assay format. Competition analysis with three different neutralizing murine anti-V2 MAbs confirmed the specificity of 697-D. The 697-D epitope is primarily conformation dependent, although there was weak reactivity of the MAb with a V2 peptide spanning residues 161 to 180. Treatment of recombinant gp120 HIVIIIB with sodium metaperiodate, which oxidizes carbohydrates, abolished the binding of the MAb, showing the dependence of the epitope on intact carbohydrates. The broad reactivity of 697-D was displayed by its binding to the gp120 molecules from four of four laboratory isolates and five of five primary isolates. The MAb 697-D neutralized three out of four primary isolates but failed to neutralize any of four laboratory strains of HIV-1. 697-D and a human anti-V3 MAb, 447-52-D, displayed similar potency in neutralizing primary isolates, indicating that the V2 region of gp120, like the V3 region and the CD4-binding domain, can induce potent neutralizing antibodies against HIV-1 in humans.  相似文献   

3.
Antibodies to several epitopes of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120-gp41) can synergize in inhibiting HIV-1 infection. In the present study we tested the ability of a monoclonal antibody (MAb), 5A8, which interacts with CD4 domain 2, and other CD4-specific MAbs to synergize with antibodies against gp120. We have previously found that 5A8 inhibits HIV-1 entry without interfering with gp120 binding to CD4, presumably by affecting a postbinding membrane fusion event. Because antibodies to the gp120 V3 loop also affect post-CD4-gp120-binding events, 5A8 was first tested in combination with anti-V3 loop antibodies for possible synergy. The anti-V3 loop antibodies 0.5 beta, NEA-9205, and 110.5 acted synergistically with 5A8 in inhibiting syncytium formation between gp120-gp41- and CD4-expressing cells. A human MAb to an epitope of gp120 involved in CD4 binding, IAM 120-1B1, and another anti-CD4 binding site antibody, PC39.13, also exerted synergistic effects in combination with 5A8. Similarly, an antibody against the gp120 binding site on CD4, 6H10, acted synergistically with an anti-V3 loop antibody, NEA-9205. However, a control anti-CD4 antibody, OKT4, which does not significantly inhibit syncytium formation alone, produced only an additive effect when combined with NEA-9205. Serum from HIV-1-infected individuals, which presumably contains antibodies to the V3 loop and the CD4 binding site, exhibited a strong synergistic effect with 5A8 in inhibiting infection by a patient HIV-1 isolate (0104B) and in blocking syncytium formation. These results indicate that therapeutics based on antibodies affecting both non-gp120 binding and gp120 binding epitopes of the target receptor molecule, CD4, could be efficient in patients who already contain anti-gp120 antibodies and could also be used to enhance passive immunization against HIV-1 in combination with anti-gp120 antibodies.  相似文献   

4.
Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV(+) plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (相似文献   

5.
A number of linear and conformation-dependent neutralizing monoclonal antibodies (MAbs) have been mapped to the first and second variable (V1 and V2) domains of human immunodeficiency virus type 1 (HIV-1) gp120. The majority of these MAbs are as effective at neutralizing HIV-1 infectivity as MAbs to the V3 domain and the CD4 binding site. The linear MAbs bind to amino acid residues 162 to 171, and changes at residues 183/184 (PI/SG) and 191/192/193 (YSL/GSS) within the V2 domain abrogate the binding of the two conformation-dependent MAbs, 11/68b and CRA-4, respectively. Surprisingly, a change at residue 435 (Y/H or Y/S), in a region of gp120 near the CD4 binding site (M. Kowalski, J. Potz, L. Basiripour, T. Dorfman, W. C. Goh, E. Terwilliger, A. Dayton, C. Rosen, W. Haseltine, and J. Sodroski, Science 237:1351-1355, 1987; L. A. Lasky, G. M. Nakamura, D. H. Smith, C. Fennie, C. Shimasaki, E. Patzer, P. Berman, T. Gregory, and D. Capon, Cell 50:975-985, 1987; and U. Olshevsky, E. Helseth, C. Furman, J. Li, W. Haseltine, and J. Sodroski, J. Virol. 64:5701-5707, 1990), abrogated gp120 recognition by both of the conformation-dependent MAbs. However, both MAbs 11/68b and CRA-4 were able to bind to HIV-1 V1V2 chimeric fusion proteins expressing the V1V2 domains in the absence of C4, suggesting that residues in C4 are not components of the epitopes but that amino acid changes in C4 may affect the structure of the V1V2 domains. This is consistent with the ability of soluble CD4 to block 11/68b and CRA-4 binding to both native cell surface-expressed gp120 and recombinant gp120 and suggests that the binding of the neutralizing MAbs to the virus occurs prior to receptor interaction. Since the reciprocal inhibition, i.e., antibody inhibition of CD4-gp120 binding, was not observed, the mechanism of neutralization is probably not a blockade of virus-receptor interaction. Finally, we demonstrate that linear sequences from the V2 region are immunogenic in HIV-1-infected individuals, suggesting that the primary neutralizing response may be directed to both V2 and V3 epitopes.  相似文献   

6.
Monoclonal antibodies (MAbs) directed against epitopes in the V2 domain of human immunodeficiency virus type 1 gp120 often possess neutralizing activity, but these generally are highly type specific, neutralize only laboratory isolates, or have low potency. The most potent of these is C108g, directed against a type-specific epitope in HXB2 and BaL gp120s, which is glycan dependent and, in contrast to previous reports, dependent on intact disulfide bonds. This epitope was introduced into two primary Envs, derived from a neutralization-sensitive (SF162) and a neutralization-resistant (JR-FL) isolate, by substitution of two residues and, for SF162, addition of an N-linked glycosylation site. C108g effectively neutralized both variant Envs with considerably higher potency than standard MAbs against the V3 and CD4-binding domains and the broadly neutralizing MAbs 2G12 and 2F5. These amino acid substitutions also introduced the epitope recognized by a second V2-specific MAb, 10/76b, but this MAb possessed potent neutralizing activity only in the absence of the glycan required for C108g reactivity. In contrast to other gp120-specific neutralizing MAbs, C108g did not block binding of soluble Env proteins to either the CD4 or the CCR5 receptor, but studies with a fusion-arrested Env indicated that C108g neutralized at a step preceding the one blocked by the gp41-specific MAb, 2F5. These results indicate that the V1/V2 domain possesses targets that mediate potent neutralization of primary viral isolates via a novel mechanism and suggest that inclusion of carbohydrate determinants into these epitopes may help overcome the indirect masking effects that limit the neutralizing potency of antibodies commonly produced after infection.  相似文献   

7.
J P Moore 《Journal of virology》1993,67(6):3656-3659
The CDR-3 region of CD4 has been proposed to be involved in the fusion reaction between human immunodeficiency virus type 1 (HIV-1) and CD4+ cells, either at a stage involving virus binding or subsequent to virus binding. Part of the evidence for this has been the observation that monoclonal antibodies (MAbs) to CDR-3 block HIV infection potently without strongly inhibiting the binding of monomeric gp120 to CD4. Here I show that, in a system using oligomeric, virion-bound gp120, a MAb to CDR-3 resembles those to CDR-2 in that it inhibits soluble CD4 binding to virions. Consequently, ternary complexes of MAb-soluble CD4-gp120 cannot be detected with CDR-2 MAbs and are detectable only at a very low level with a CDR-3 MAb, but they clearly form when a control MAb to CD4 domain 4 is used. Although not in direct conflict with previously published data on the role of CDR-3 MAbs in the inhibition of HIV-1 infection, these experiments do not support the hypothesis that the CDR-3 region is specifically involved in virus entry at a postbinding stage.  相似文献   

8.
We have described previously genetic characterization of neutralization-resistant, high-infectivity, and neutralization-sensitive, low-infectivity mutants of human immunodeficiency virus type 1 (HIV-1) MN envelope. The distinct phenotypes of these clones are attributable to six mutations affecting functional interactions between the gp120 C4-V5 regions and the gp41 leucine zipper. In the present study we examined mechanisms responsible for the phenotypic differences between these envelopes using neutralization and immunofluorescence assays (IFA). Most monoclonal antibodies (MAbs) tested against gp120 epitopes (V3, CD4 binding site, and CD4-induced) were 20 to 100 times more efficient at neutralizing pseudovirus expressing sensitive rather than resistant envelope. By IFA cells expressing neutralization sensitive envelope bound MAbs to gp120 epitopes more, but gp41 epitopes less, than neutralization-resistant envelope. This binding difference appeared to reflect conformational change, since it did not correlate with the level of protein expression or gp120-gp41 dissociation. This conformational change was mostly attributable to one mutation, L544P, which contributes to neutralization resistance but not to infectivity enhancement. The V420I mutation, which contributes a major effect to both high infectivity and neutralization resistance, had no apparent effect on conformation. Notably, a conformation-dependent V3 neutralization epitope remained sensitive to neutralization and accessible to binding by MAbs on neutralization-resistant HIV-1 envelope. Sensitivity to sCD4 did not distinguish the clones, suggesting that the phenotypes may be related to post-CD4-binding effects. The results demonstrate that neutralization resistance can be determined by distinguishable effects of mutations, which cause changes in envelope conformation and/or function(s) related to infectivity. A conformation-dependent V3 epitope may be an important target for neutralization of resistant strains of HIV-1.  相似文献   

9.
The immunologic relatedness of the various human immunodeficiency virus type 1 (HIV-1) clades was determined with 13 human anti-HIV-1 monoclonal antibodies (MAbs) to six immunogenic regions of the HIV-1 structural proteins. The immunoreactivity of the native, oligomeric viral envelope glycoproteins expressed on the surfaces of human peripheral blood mononuclear cells infected in vitro with primary isolates from clades A through E was determined by flow cytometry. Some epitopes in the immunodominant region of gp41 and the C terminus of gp120 appear to be HIV-1 group specific in that they are expressed on the surfaces of cells in cultures infected with the majority of viruses tested from clades A to E. Epitopes within the V3 region appear to be clade restricted. Surprisingly, one MAb to an epitope in the C terminus of gp120 was entirely clade B specific. Staining with anti-V2 and anti-CD4 binding domain (CD4bd) reagents was infrequently detected. Anti-CD4bd MAbs stained only CD4-negative T cells because the CD4bd of gp120 appeared to be complexed with membrane CD4. When present, the epitopes of V2 and the CD4bd appeared to be expressed on cells infected with various clades. Thus, the results suggest that MAbs to gp41, the C terminus, and the V3 loop of gp120 are most useful in serotyping primary isolates of HIV-1, providing group-specific, clade-restricted, and clade-specific reagents. The use of the immunofluorescent method with the reagents described herein distinguishes infection with clade B from that with all other HIV-1 clades. With additional MAbs, this technique will allow a broadly applicable, reproducible, and practical method for serotyping HIV-1.  相似文献   

10.
We have investigated whether nonneutralizing monoclonal antibodies (MAbs) to the gp120 subunit of the envelope glycoprotein (Env) complex of human immunodeficiency virus type 1 (HIV-1) can interfere with HIV-1 neutralization by another anti-gp120 MAb. We used neutralizing (b12) and nonneutralizing (205-42-15, 204-43-1, 205-46-9) MAbs to the epitope cluster overlapping the CD4-binding site (CD4BS) on gp120. All the MAbs, neutralizing or otherwise, cross-competed for binding to monomeric gp120, indicating the close topological proximity of their epitopes. However, the nonneutralizing CD4BS MAbs did not interfere with the neutralization activity of MAb b12. In contrast, in a binding assay using oligomeric Env expressed on the surface of Env-transfected cells, the nonneutralizing MAbs did partially compete with b12 for Env binding. The surface of Env-transfected cells contains two categories of binding site for CD4BS MAbs. One type of site is recognized by both b12 and nonneutralizing CD4BS MAbs; the other is recognized by only b12. Binding assays for Env-gp120 interactions based on the use of monomeric gp120 or Env-transfected cells do not predict the outcome of HIV-1 neutralization assays, and they should therefore be used only with caution when gauging the properties of anti-Env MAbs.  相似文献   

11.
The V1/V2 and V3 loops are proximal to the CD4 binding site (CD4bs) of human immunodeficiency virus type 1 (HIV-1) gp120 and undergo conformational change upon CD4 receptor engagement by the HIV-1 envelope spike. Nearly all of the reported monoclonal antibodies (MAbs) against the CD4bs exhibit a very limited capacity to neutralize HIV-1. However, one such human MAb, immunoglobulin G1 (IgG1) b12, is uniquely able to neutralize primary isolates across subtypes with considerable potency. The molecular basis for the anti-HIV-1 activity of b12 is not fully understood but is relevant to vaccine design. Here we describe a novel human MAb, 4KG5, whose binding to monomeric gp120 is moderately enhanced by IgG1 b12. In sharp contrast, 4KG5 binding to gp120 is inhibited by soluble CD4 (sCD4) and by all other (n = 14) anti-CD4bs MAbs tested. 4KG5 is unable to recognize gp120 in which either V1, V2, or V3 has been deleted, and MAbs against the V2 or V3 loops inhibit the binding of 4KG5 to gp120. Moreover, 4KG5 is able to inhibit the binding of the CD4-induced MAbs 17b and X5 in the absence of sCD4, whereas 17b and X5 only weakly inhibit the binding of 4KG5 to gp120. Mutagenesis of gp120 provides further evidence of a discontinuous epitope of 4KG5 that is formed by the V1/V2 loop, the V3 loop, and a portion of the bridging sheet (C4). 4KG5 was isolated as a single-chain Fv from a phage display library constructed from the bone marrow of an HIV-1-seropositive subject (FDA2) whose serum neutralizes HIV-1 across subtypes. Despite its source, we observed no significant neutralization with 4KG5 against the autologous (R2) virus and several other strains of HIV-1. The results suggest a model in which antibody access to the CD4bs on the envelope spike of HIV-1 is restricted by the orientation and/or dynamics of the V1/V2 and V3 loops, and b12 avoids these restrictions.  相似文献   

12.
The gp120 CD4 binding site (CD4bs) and coreceptor binding site (CoRbs) are two functionally conserved elements of the HIV-1 envelope glycoproteins (Env). We previously defined the presence of CD4bs-neutralizing antibodies in the serum of an HIV-1-infected individual and subsequently isolated the CD4bs-specific monoclonal antibodies (MAbs) VRC01 and VRC03 from the memory B cell population. Since this donor''s serum also appeared to contain neutralizing antibodies to the CoRbs, we employed a differential fluorescence-activated cell sorter (FACS)-based sorting strategy using an Env trimer possessing a CoRbs knockout mutation (I420R) to isolate specific B cells. The MAb VRC06 was recovered from these cells, and its genetic sequence allowed us to identify a clonal relative termed VRC06b, which was isolated from a prior cell sort using a resurfaced core gp120 probe and its cognate CD4bs knockout mutant. VRC06 and VRC06b neutralized 22% and 44% of viruses tested, respectively. Epitope mapping studies revealed that the two MAbs were sensitive to mutations in both the gp120 CoRbs and the CD4bs and could cross-block binding of both CD4bs and CoRbs MAbs to gp120. Fine mapping indicated contacts within the gp120 bridging sheet and the base of the third major variable region (V3), which are elements of the CoRbs. Cell surface binding assays demonstrated preferential recognition of fully cleaved Env trimers over uncleaved trimers. Thus, VRC06 and VRC06b are Env trimer precursor cleavage-sensitive neutralizing MAbs that bind to a region of gp120 that overlaps both the primary and the secondary HIV-1 receptor binding sites.  相似文献   

13.
We have probed the structures of monomeric and oligomeric gp120 glycoproteins from the LAI isolate of human immunodeficiency virus type 1 (HIV-1) with a panel of monoclonal antibodies (MAbs); most of these MAbs are directed against continuous epitopes. On native monomeric gp120, most of the first conserved (C1) domain is accessible to MAbs, although some regions of C1 are relatively inaccessible. All of the MAbs directed against the C2, C3, and C5 domains bind preferentially to denatured monomeric gp120, indicating that these regions of gp120 are poorly accessible on the native monomer, although the extreme C terminus in C5 is well exposed. Segments of the V1, V2, and V3 loops are exposed on the surface of monomeric gp120, although the base of the V3 loop is inaccessible. A portion of C4 is also available for MAb binding on monomeric gp120, as is the extreme C terminus in C5. However, on oligomeric gp120-gp41 complexes, only the V2 and V3 loops (and perhaps V1) are well exposed and a segment of the C4 region is partially exposed; continuous epitopes in C1 and C5 that are accessible to antibodies on monomeric gp120 are occluded on the oligomer. Although deletion of the V1, V2, and V3 loops resulted in increased exposure of several discontinuous epitopes overlapping the CD4-binding site, the exposure of most continuous epitopes on the monomeric gp120 glycoprotein was not affected. These results imply a HIV-1 gp120 structure in which the conserved continuous determinants are inaccessible; in some cases, this inaccessibility is due to intramolecular interactions between conserved regions, and in other cases, it is due to intermolecular interactions with other components of the glycoprotein spike. These findings have implications for the design of subunit vaccines based on gp120.  相似文献   

14.
Monoclonal antibodies (MAbs) to defined peptide epitopes on gp120 from human immunodeficiency virus type 1 were used to investigate the involvement of their epitopes in gp120 binding to the CD4 receptor. Recombinant vaccinia viruses were constructed that expressed either full-length gp120 (v-ED6), or a truncated gp120 lacking 44 amino acids at the carboxyl terminus (v-ED4). Binding of these glycoproteins to the CD4 receptor was detected directly with metabolically labeled gp120 or indirectly with the gp120 MAbs. Truncated gp120 from v-ED4 bound to CD4-positive cells less than 1/12 as well as gp120 from v-ED6, indicating that the C-terminal region of gp120, which is conserved in numerous isolates of human immunodeficiency virus type 1, is critical for CD4 binding. However, MAb 110-1, which recognizes a peptide contained in the region deleted from v-ED4 (amino acids 489 through 511), did not inhibit binding of gp120 to CD4. MAb 110-1 also reacted with gp120 bound to the CD4 receptor, indicating that the epitope for this antibody does not directly interact with CD4. A second MAb, 110-4, which recognizes a peptide epitope located between amino acids 303 and 323 and has potent viral neutralizing activity, also bound to gp120 on the CD4 receptor. Furthermore, pretreatment of gp120 with MAb 110-4 at concentrations approximately 1,000-fold higher than those required for complete virus neutralization inhibited subsequent CD4 binding by only about 65%. Taken together, these data suggest that neutralization mediated by antibody 110-4 does not result from binding of this MAb to the CD4-binding site of gp120.  相似文献   

15.
The external domain of the envelope glycoprotein, gp120, of simian immunodeficiency virus (SIV) has been expressed as a mature secreted product using recombinant baculoviruses and the expressed protein, which has an observed molecular mass of 110 kDa, was purified by monoclonal antibody (MAb) affinity chromatography. N-terminal sequence analysis showed a signal sequence cleavage identity similar to that of the gp120s of both human immunodeficiency virus type 1 (HIV-1) and HIV type 2. The expressed molecule bound to soluble CD4 with an affinity that was approximately 10-fold lower than that of gp120 from HIV-1. A screening of the ability of SIV envelope MAbs to inhibit CD4 binding revealed two groups of inhibitory MAbs. One group is dependent on conformation, while the second group maps to a discrete epitope near the amino terminus. The particular role of the V3 loop region of the molecule in CD4 binding was investigated by the construction of an SIV-HIV hybrid in which the V3 loop of SIV was precisely replaced with the equivalent domain from HIV-1 MN. The hybrid glycoprotein bound HIV-1 V3 loop MAbs and not SIV V3 MAbs but continued to bind conformational SIV MAbs and soluble CD4 as well as the parent molecule.  相似文献   

16.
We have used an indirect-capture enzyme-linked immunosorbent assay to quantitate the reactivity of sera from human immunodeficiency virus type 1 (HIV-1)-infected humans with native recombinant gp120 (HIV-1 IIIB or SF-2) or with the gp120 molecule (IIIB or SF-2) denatured by being boiled in the presence of dithiothreitol with or without sodium dodecyl sulfate. Denaturation of IIIB gp120 reduced the titers of sera from randomly selected donors by at least 100-fold, suggesting that the majority of cross-reactive anti-gp120 antibodies present are directed against discontinuous or otherwise conformationally sensitive epitopes. When SF-2 gp120 was used, four of eight serum samples reacted significantly with the denatured protein, albeit with ca. 3- to 50-fold reductions in titer. Only those sera reacting with denatured SF-2 gp120 bound significantly to solid-phase-adsorbed SF-2 V3 loop peptide, and none bound to IIIB V3 loop peptide. Almost all antibody binding to reduced SF-2 gp120 was blocked by preincubation with the SF-2 V3 loop peptide, as was about 50% of the binding to native SF-2 gp120. When sera from a laboratory worker or a chimpanzee infected with IIIB were tested, the pattern of reactivity was reversed, i.e., there was significant binding to reduced IIIB gp120, but not to reduced SF-2 gp120. Binding of these sera to reduced IIIB gp120 was 1 to 10% that to native IIIB gp120 and was substantially decreased by preincubation with IIIB (but not SF-2) V3 loop peptide. To analyze which discontinuous or conformational epitopes were predominant in HIV-1-positive sera, we prebound monoclonal antibodies (MAbs) to IIIB gp120 and then added alkaline phosphatase-labelled HIV-1-positive sera. MAbs (such as 15e) that recognize discontinuous epitopes and compete directly with CD4 reduced HIV-1-positive sera binding by about 50%, whereas neutralizing MAbs to the C4, V2, and V3 domains of gp120 were either not inhibitory or only weakly so. Thus, antibodies to the discontinuous CD4-binding site on gp120 are prevalent in HIV-1-positive sera, antibodies to linear epitopes are less common, most of the antibodies to linear epitopes are directed against the V3 region, and most cross-reactive antibodies are directed against discontinuous epitopes, including regions involved in CD4 binding.  相似文献   

17.
Synergistic neutralization of human immunodeficiency virus type 1 (HIV-1) was observed in studies using a chimpanzee anti-V2 monoclonal antibody (MAb), C108G, in combination with anti-V3 loop and anti-CD4 binding-site (bs) MAbs of different epitope specificities. C108G paired with either of two anti-V3 loop MAbs or either of two anti-CD4 bs MAbs synergistically neutralized both the uncloned IIIB and clonal HXB2 strains of virus in H9 target cells. Synergism was quantitated by calculation of combination indices. Significant synergy with a given MAb pair was seen over a range of MAb ratios, with the optimal effect centering around the ratio at which the MAbs were equipotent for a given HIV-1 strain (on the basis of the 50% neutralization titer). In preliminary experiments with monocytotropic strains of HIV-1 in peripheral blood mononuclear cell targets, significant synergism was also observed between anti-V2-anti-V3 and anti-V2-anti-CD4 bs MAb pairs. Synergism by all MAb pairs tested was greater against heterogeneous isolates of HIV-1 (IIIB and Ba-L) than against clonal isolates (HXB2 and NLHXADA), suggesting that strain broadening may be a component of the synergism observed against the heterogeneous isolates. In addition, conformational changes in gp120 upon binding of one or both MAbs may result in increased affinity or exposure of the epitope of one or both MAbs. Finally, a three-MAb combination of C108G, an anti-V3 MAb, and an anti-CD4 bs MAb was more effective in neutralizing the HXB2 strain of HIV-1 than any of the three two-MAb combinations within this trio, as determined by the dose reduction indices of each MAb required to achieve a given level of neutralization. This is the first report of synergistic neutralization of HIV-1 by a three-MAb combination composed of MAbs directed against the three major neutralization epitope clusters in gp120. Implications for vaccine design and for immunoprophylaxis and immunotherapy with a combination of MAbs are discussed.  相似文献   

18.
The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells.  相似文献   

19.
Human immunodeficiency virus-type I (HIV-1) infection elicits antibodies (Abs) directed against several regions of the gp120 and gp41 envelope glycoproteins. Many of these Abs are able to neutralize T-cell-line-adapted strains (TCLA) of HIV-1, but only a few effectively neutralize primary HIV-1 isolates. The nature of HIV-1 neutralization has been carefully studied using human monoclonal Abs (MAbs), and the ability of such MAbs to act in synergy to neutralize HIV-1 has also been extensively studied. However, most synergy studies have been conducted using TCLA strains. To determine the nature of Ab interaction in HIV-1 primary isolate neutralization, a panel of 12 anti-HIV-1 human immunoglobulin G (IgG) MAbs, specific for epitopes in gp120 and gp41, were used. Initial tests showed that six of these MAbs, as well as sCD4, used individually, were able to neutralize the dualtropic primary isolate HIV-1(89.6); MAbs giving significant neutralization at 2 to 10 microg/ml included 2F5 (anti-gp41), 50-69 (anti-gp41), IgG1b12 (anti-gp120(CD4bd)), 447-52D (anti-gp120(V3)), 2G12 (anti-gp120), and 670-D (anti-gp120(C5)). For studies of reagent interaction, 16 binary combinations of reagents were tested for their ability to neutralize HIV-1(89.6). Reagent combinations tested included one neutralizing MAb with sCD4, six pairs consisting of two neutralizing MAbs, and nine pairs consisting of one neutralizing MAb with another non-neutralizing MAb. To assess the interaction of the latter type of combination, a new mathematical treatment of reagent interaction was developed since previously used methods could be used only when both reagents neutralize. Synergy was noted between sCD4 and a neutralizing anti-gp120(V3) MAb. Antagonism was noted between two pairs of anti-gp41 MAbs (one neutralizing and one non-neutralizing). All of the other 13 pairs of MAbs tested displayed only additive effects. These studies suggest that Abs rarely act in synergy to neutralize primary isolate HIV-1(89.6); many anti-HIV-1 Abs act additively to mediate this biological function.  相似文献   

20.
V2/V3 conformational epitope antibodies that broadly neutralize HIV-1 (PG9 and PG16) have been recently described. Since an elicitation of previously known broadly neutralizing antibodies has proven elusive, the induction of antibodies with such specificity is an important goal for HIV-1 vaccine development. A critical question is which immunogens and vaccine formulations might be used to trigger and drive the development of memory B cell precursors with V2/V3 conformational epitope specificity. In this paper we identified a clonal lineage of four V2/V3 conformational epitope broadly neutralizing antibodies (CH01 to CH04) from an African HIV-1-infected broad neutralizer and inferred their common reverted unmutated ancestor (RUA) antibodies. While conformational epitope antibodies rarely bind recombinant Env monomers, a screen of 32 recombinant envelopes for binding to the CH01 to CH04 antibodies showed monoclonal antibody (MAb) binding to the E.A244 gp120 Env and to chronic Env AE.CM243; MAbs CH01 and CH02 also bound to transmitted/founder Env B.9021. CH01 to CH04 neutralized 38% to 49% of a panel of 91 HIV-1 tier 2 pseudoviruses, while the RUAs neutralized only 16% of HIV-1 isolates. Although the reverted unmutated ancestors showed restricted neutralizing activity, they retained the ability to bind to the E.A244 gp120 HIV-1 envelope with an affinity predicted to trigger B cell development. Thus, E.A244, B.9021, and AE.CM243 Envs are three potential immunogen candidates for studies aimed at defining strategies to induce V2/V3 conformational epitope-specific antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号