首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  完全免费   42篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2006年   1篇
  2003年   2篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   10篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1983年   2篇
排序方式: 共有69条查询结果,搜索用时 46 毫秒
1.
Primary isolates of human immunodeficiency virus type 1 (HIV-1) are much less sensitive to neutralization by soluble CD4 (sCD4) and sCD4-immunoglobulin (Ig) chimeras (CD4-IgG) than are HIV-1 strains adapted to growth in cell culture. We demonstrated that there are significant reductions (10- to 30-fold) in the binding of sCD4 and CD4-IgG to intact virions of five primary isolates compared with sCD4-sensitive, cell culture-adapted isolates RF and IIIB. However, soluble envelope glycoproteins (gp120) derived from the primary isolate virions, directly by detergent solubilization or indirectly by recombinant DNA technology, differed in affinity from RF and IIIB gp120 by only one- to threefold. The reduced binding of sCD4 to these primary isolate virions must therefore be a consequence of the tertiary or quaternary structure of the envelope glycoproteins in their native, oligomeric form on the viral surface. In addition, the rate and extent of sCD4-induced gp120 shedding from these primary isolates was lower than that from RF. We suggest that reduced sCD4 binding and increased gp120 retention together account for the relative resistance of these primary isolates to neutralization by sCD4 and CD4-IgG and that virions of different HIV-1 isolates vary both in the mechanism of sCD4 binding and in subsequent conformational changes in their envelope glycoproteins.  相似文献
2.
We have analyzed the binding of soluble CD4 (sCD4) to human immunodeficiency virus type 1 (HIV-1) virions (isolates IIIB and RF) at 4 and 37 degrees C by using a combination of gel exclusion chromatography and enzyme-linked immunosorbent assay detection systems. The sCD4 binding curve at 37 degrees C indicates that the affinity of the interaction of sCD4 with gp120 on the virion surface is indistinguishable from the affinity of sCD4 for the equivalent concentration of soluble gp120. At 4 degrees C, however, the affinity of sCD4 for virion-bound gp120 but not for soluble gp120 is reduced by about 20-fold. Binding of sCD4 (greater than 0.2 microgram/ml) to virions at 37 degrees C but not 4 degrees C induces the rapid dissociation of a major proportion of gp120 from gp41 on the virion surface. This dissociation requires occupancy by sCD4 of multiple (probably two) binding sites on a gp120-gp41 oligomer. At 37 degrees C there are two components to the neutralizing action of sCD4 on HIV-1; reversible, competitive inhibition at low sCD4 concentrations (less than 0.2 microgram/ml) and essentially irreversible inhibition due to gp120 loss at higher sCD4 concentrations. At 4 degrees C, sCD4 neutralizes HIV infectivity by competitive inhibition alone. These findings may have implications for the HIV-CD4+ cell binding and fusion reactions and the mechanism by which sCD4 blocks infectivity.  相似文献
3.
We have used an indirect-capture enzyme-linked immunosorbent assay to quantitate the reactivity of sera from human immunodeficiency virus type 1 (HIV-1)-infected humans with native recombinant gp120 (HIV-1 IIIB or SF-2) or with the gp120 molecule (IIIB or SF-2) denatured by being boiled in the presence of dithiothreitol with or without sodium dodecyl sulfate. Denaturation of IIIB gp120 reduced the titers of sera from randomly selected donors by at least 100-fold, suggesting that the majority of cross-reactive anti-gp120 antibodies present are directed against discontinuous or otherwise conformationally sensitive epitopes. When SF-2 gp120 was used, four of eight serum samples reacted significantly with the denatured protein, albeit with ca. 3- to 50-fold reductions in titer. Only those sera reacting with denatured SF-2 gp120 bound significantly to solid-phase-adsorbed SF-2 V3 loop peptide, and none bound to IIIB V3 loop peptide. Almost all antibody binding to reduced SF-2 gp120 was blocked by preincubation with the SF-2 V3 loop peptide, as was about 50% of the binding to native SF-2 gp120. When sera from a laboratory worker or a chimpanzee infected with IIIB were tested, the pattern of reactivity was reversed, i.e., there was significant binding to reduced IIIB gp120, but not to reduced SF-2 gp120. Binding of these sera to reduced IIIB gp120 was 1 to 10% that to native IIIB gp120 and was substantially decreased by preincubation with IIIB (but not SF-2) V3 loop peptide. To analyze which discontinuous or conformational epitopes were predominant in HIV-1-positive sera, we prebound monoclonal antibodies (MAbs) to IIIB gp120 and then added alkaline phosphatase-labelled HIV-1-positive sera. MAbs (such as 15e) that recognize discontinuous epitopes and compete directly with CD4 reduced HIV-1-positive sera binding by about 50%, whereas neutralizing MAbs to the C4, V2, and V3 domains of gp120 were either not inhibitory or only weakly so. Thus, antibodies to the discontinuous CD4-binding site on gp120 are prevalent in HIV-1-positive sera, antibodies to linear epitopes are less common, most of the antibodies to linear epitopes are directed against the V3 region, and most cross-reactive antibodies are directed against discontinuous epitopes, including regions involved in CD4 binding.  相似文献
4.
A panel of anti-gp120 human monoclonal antibodies (HuMAbs), CD4-IgG, and sera from people infected with human immunodeficiency virus type 1 (HIV-1) was tested for neutralization of nine primary HIV-1 isolates, one molecularly cloned primary strain (JR-CSF), and two strains (IIIB and MN) adapted for growth in transformed T-cell lines. All the viruses were grown in mitogen-stimulated peripheral blood mononuclear cells and were tested for their ability to infect these cells in the presence and absence of the reagents mentioned above. In general, the primary isolates were relatively resistant to neutralization by the MAbs tested, compared with the T-cell line-adapted strains. However, one HuMAb, IgG1b12, was able to neutralize most of the primary isolates at concentrations of < or = 1 microgram/ml. Usually, the inability of a HuMAb to neutralize a primary isolate was not due merely to the absence of the antibody epitope from the virus; the majority of the HuMAbs bound with high affinity to monomeric gp120 molecules derived from various strains but neutralized the viruses inefficiently. We infer therefore that the mechanism of resistance of primary isolates to most neutralizing antibodies is complex, and we suggest that it involves an inaccessibility of antibody binding sites in the context of the native glycoprotein complex on the virion. Such a mechanism would parallel that which was previously postulated for soluble CD4 resistance. We conclude that studies of HIV-1 neutralization that rely on strains adapted to growth in transformed T-cell lines yield the misleading impression that HIV-1 is readily neutralized. The more relevant primary HIV-1 isolates are relatively resistant to neutralization, although these isolates can be potently neutralized by a subset of human polyclonal or monoclonal antibodies.  相似文献
5.
We have probed the structures of monomeric and oligomeric gp120 glycoproteins from the LAI isolate of human immunodeficiency virus type 1 (HIV-1) with a panel of monoclonal antibodies (MAbs); most of these MAbs are directed against continuous epitopes. On native monomeric gp120, most of the first conserved (C1) domain is accessible to MAbs, although some regions of C1 are relatively inaccessible. All of the MAbs directed against the C2, C3, and C5 domains bind preferentially to denatured monomeric gp120, indicating that these regions of gp120 are poorly accessible on the native monomer, although the extreme C terminus in C5 is well exposed. Segments of the V1, V2, and V3 loops are exposed on the surface of monomeric gp120, although the base of the V3 loop is inaccessible. A portion of C4 is also available for MAb binding on monomeric gp120, as is the extreme C terminus in C5. However, on oligomeric gp120-gp41 complexes, only the V2 and V3 loops (and perhaps V1) are well exposed and a segment of the C4 region is partially exposed; continuous epitopes in C1 and C5 that are accessible to antibodies on monomeric gp120 are occluded on the oligomer. Although deletion of the V1, V2, and V3 loops resulted in increased exposure of several discontinuous epitopes overlapping the CD4-binding site, the exposure of most continuous epitopes on the monomeric gp120 glycoprotein was not affected. These results imply a HIV-1 gp120 structure in which the conserved continuous determinants are inaccessible; in some cases, this inaccessibility is due to intramolecular interactions between conserved regions, and in other cases, it is due to intermolecular interactions with other components of the glycoprotein spike. These findings have implications for the design of subunit vaccines based on gp120.  相似文献
6.
Several parameters which may affect the infectivity of human immunodeficiency virus type 1 in tissue culture were analyzed. In particular, we used gel exclusion chromatography to investigate how the loss of the surface glycoprotein gp120 from virions of the HTLV-IIIB (IIIB), HTLV-IIIRF (RF), and SF-2 isolates modulates infectivity. In IIIB and RF cultures, a high proportion of the total gp120 was virion bound initially but was gradually lost from the virions over time. In contrast, most of the gp120 (and p24) in SF-2-infected cultures was soluble and the few particles present had a fivefold-lower level of virus-bound gp120. However, this reduced level of virion-bound gp120 was more resistant to shedding. Loss of a major proportion of gp120 from IIIB and RF virions resulted in reduced infectivities, and in addition, the resulting accumulation of soluble gp120 in the cultures could competitively inhibit viral infection, especially with SF-2. Increased shedding of virion gp120 also affected the neutralization of IIIB and RF particles. However, the high sensitivity to human serum neutralization characteristic of SF-2 was unaffected by soluble gp120 in cultures, suggesting that the epitopes responsible are not present on soluble gp120.  相似文献
7.
We have probed the structure of the C4 and V3 domains of human immunodeficiency virus type 1 gp120 by immunochemical techniques. Monoclonal antibodies (MAbs) recognizing an exposed gp120 sequence, (E/K)VGKAMYAPP, in C4 were differentially sensitive to denaturation of gp120, implying a conformational component to some of the epitopes. The MAbs recognizing conformation-sensitive C4 structures failed to bind to a gp120 mutant with an alteration in the sequence of the V3 loop, and their binding to gp120 was inhibited by both V3 and C4 MAbs. This implies an interaction between the V3 and C4 regions of gp120, which is supported by the observation that the binding of some MAbs to the V3 loop was often enhanced by amino acid changes in an around the C4 region.  相似文献
8.
We have analyzed a panel of eight murine monoclonal antibodies (MAbs) that depend on the V2 domain for binding to human immunodeficiency virus type 1 (HIV-1) gp120. Each MAb is sensitive to amino acid changes within V2, and some are affected by substitutions elsewhere. With one exception, the MAbs were not reactive with peptides from the V2 region, or only poorly so. Hence their ability to bind recombinant strain IIIB gp120 depended on the preservation of native structure. Three MAbs cross-reacted with strain RF gp120, but only one cross-reacted with MN gp120, and none bound SF-2 gp120. Four MAbs neutralized HIV-1 IIIB with various potencies, and the one able to bind MN gp120 neutralized that virus. Peptide serology indicated that antibodies cross-reactive with the HxB2 V1 and V2 regions are rarely present in HIV-1-positive sera, but the relatively conserved segment between the V1 and V2 loops was recognized by antibodies in a significant fraction of sera. Antibodies able to block the binding of V2 MAbs to IIIB or MN gp120 rarely exist in sera from HIV-1-infected humans; more common in these sera are antibodies that enhance the binding of V2 MAbs to gp120. This enhancement effect of HIV-1-positive sera can be mimicked by several human MAbs to different discontinuous gp120 epitopes. Soluble CD4 enhanced binding of one V2 MAb to oligomeric gp120 but not to monomeric gp120, perhaps by inducing conformational changes in the oligomer.  相似文献
9.
We have investigated the molecular basis of biological differences observed among cell line-adapted isolates of the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and the simian immunodeficiency virus (SIV) in response to receptor binding by using a soluble form of CD4 (sCD4) as a receptor mimic. We find that sCD4 binds to the envelope glycoproteins of all of the HIV-1 isolates tested with affinities within a threefold range, whereas those of the HIV-2 and SIV isolates have relative affinities for sCD4 two- to eightfold lower than those of HIV-1. Treatment of infected cells with sCD4 induced the dissociation of gp120 from gp41 and increased the exposure of a cryptic gp41 epitope on all of the HIV-1 isolates. By contrast, neither dissociation of the outer envelope glycoprotein nor increased exposure of the transmembrane glycoprotein was observed when sCD4 bound to HIV-2- or SIV-infected cells. Moreover, immunoprecipitation with sCD4 resulted in the coprecipitation of the surface and transmembrane glycoproteins from virions of the HIV-2 and SIV isolates, whereas the surface envelope glycoprotein alone was precipitated from HIV-1. However, treatment of HIV-1-, HIV-2-, and SIV-infected cells with sCD4 did result in an increase in exposure of their V2 and V3 loops, as detected by enhanced antibody reactivity. This demonstrates that receptor binding to the outer envelope glycoprotein induces certain conformational changes which are common to all of these viruses and others which are restricted to cell line-passaged isolates of HIV-1.  相似文献
10.
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号