首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SSR分子标记检测出的花生类型内遗传变异   总被引:6,自引:0,他引:6  
花生是我国重要的食用油和蛋白质来源作物,鉴定其DNA分子多态性对品种改良和资源评价具有重要的意义。从已公布的花生Genomic-SSR和EST-SSR引物中筛选出34对引物,用来分别鉴定花生4大类型各24份共96份品种资源的分子变异,其中龙生型资源全部来自广西,普通型资源中有11份从国外引进,有13份来自广西和国内其他省市,多粒型资源只有两份来自中国,其他22份分别来自印度、美国和非洲等地,珍珠豆型资源中有22份是来自中国各地的育成品种或农家品种,有2份来自国外。研究结果为:分别有10~16对SSR引物能在4大类型花生资源中扩增出多态性DNA片段;这些多态性SSR引物都具有多位点特性;首次为SSR分子标记设立了一个新的评价指标——区别指数,多态性SSR引物的区别指数最高达0.992;资源间的平均遗传距离,多粒型为0.59,普通型为0.48,珍珠豆型为0.38,龙生型为0.17。根据遗传距离采用最长距离法对4大类型花生资源分别进行了聚类分析,构建了资源间的遗传关系图,花生4大类型可进一步分成不同类群,资源间的亲缘关系与其来源相关。观察到PM15和PMc297的扩增产物具有类型特异性,PM15能在龙生型、普通型和多粒型花生资源中扩增出多态性条带,而在珍珠豆型花生中扩增条带完全相同,PMc297也有相似的扩增结果。由于在多粒型花生资源中检测出的遗传多样性最丰富,研究结果支持西班牙专家Krapovickas 1994年公布的花生栽培种分类系统。总之在花生4大类型内资源中能检测出丰富的SSR分子标记,开发出更多的SSR分子标记将能充分揭示花生分子水平的变异,从而使花生遗传图谱构建、分子标记辅助育种成为可能。  相似文献   

2.
Thirty-one genomic SSR markers with a M13 tail attached were used to assess the genetic diversity of the peanut mini core collection. The M13-tailed method was effective in discriminating almost all the cultivated and wild accessions. A total of 477 alleles were detected with an average of 15.4 alleles per locus. The mean polymorphic information content (PIC) score was 0.687. The cultivated peanut (Arachis hypogaea L.) mini core produced a total of 312 alleles with an average of 10.1 alleles per locus. A neighbour-joining tree was constructed to determine the interspecific and intraspecific relationships in this data set. Almost all the peanut accessions in this data set classified into subspecies and botanical varieties such as subsp. hypogaea var. hypogaea, subsp. fastigiata var. fastigiata, and subsp. fastigiata var. vulgaris clustered with other accessions with the same classification, which lends further support to their current taxonomy. Alleles were sequenced from one of the SSR markers used in this study, which demonstrated that the repeat motif is conserved when transferring the marker across species borders. This study allowed the examination of the diversity and phylogenetic relationships in the peanut mini core which has not been previously reported.  相似文献   

3.
野生花生种质的SSR遗传多样性   总被引:7,自引:0,他引:7  
以花生属(Arachis)6个区组24种(包括栽培种)84份种质为材料,用SSR技术对其亲缘关系和遗传多样性进行了分析.从206对SSR引物中筛选到59对能扩增出稳定的多态性条带的引物,这些引物能在花生属基因组DNA中扩增出1~6个DNA片段.结果表明,84份种质的遗传距离为0.04~0.93,平均为0.64,其中匍匐区组的A.appressipila的2份种质(G4与G5)的遗传距离最小(0.04),匍匐区组的A.rigonii(G14)与根茎区组的A.glabrata(G28)的遗传距离最大(0.93).聚类分析结果与花生属的区组分类基本一致,栽培种花生被聚在花生区组中,而且7份栽培种被聚在同一亚亚组中,相同植物学类犁(相当于变种)的材料均被分别聚在一起.异形花区组与直立区组的亲缘关系最近,与花生区组的亲缘关系较近的是匍匐区组.花牛区组的二倍体野生种A.villosa、A.duranensis和A.benensis与栽培种化生关系较近,可以作为桥梁物种来转移其他野生花生的优良基因.  相似文献   

4.
辣椒种质遗传多样性的RAPD和ISSR及其表型数据分析   总被引:16,自引:3,他引:13  
用RAPDI、SSR分子标记及28个表型性状数据对辣椒属5个栽培种的13份材料进行了分析,结果表明:23条RAPD引物共扩增出209条带,平均每个引物扩增出9.09条,多态性位点比率为83.73%;16条ISSR引物共扩增出94条带,平均每个引物扩增出5.88条,多态性位点比率为79.79%.与RAPD相比,ISSR标记检测到的有效等位基因数(Ne)及Shannon多样性指数(I)、遗传离散度(Ht)和遗传分化系数(Gst)等遗传多样性参数都较大,多态性位点比例在亲缘关系较近的一年生辣椒(Capsicum annuum)种内较高,说明ISSR有更高的多态性检测效率,并且适合亲缘关系较近的种群间遗传多样性分析.基于RAPDI、SSR的聚类与基于表型数据的聚类之间存在极显著正相关,且都能将C.annuum与其它栽培种区分开来.  相似文献   

5.
Cultivated peanut, Arachis hypogaea L., is a tetraploid (2n = 4x = 40) species thought to be of allopolyploid origin. Its closest relatives are the diploid (2n = 2x = 20) annual and perennial species included with it in Arachis sect. Arachis. Species in section Arachis represent an important source of novel alleles for improvement of cultivated peanut. A better understanding of the level of speciation and taxonomic relationships between taxa within section Arachis is a prerequisite to the effective use of this secondary gene pool in peanut breeding programs. The AFLP technique was used to determine intra- and interspecific relationships among and within 108 accessions of 26 species of this section. A total of 1328 fragments were generated with 8 primer combinations. From those, 239 bands ranging in size from 65 to 760 bp were scored as binary data. Genetic distances among accessions ranged from 0 to 0.50. Average distances among diploid species (0.30) were much higher than that detected between tetraploid species (0.05). Cluster analysis using different methods and principal component analysis were performed. The resulting grouping of accessions and species supports previous taxonomic classifications and genome designations. Based on genetic distances and cluster analysis, A-genome accessions KG 30029 (Arachis helodes) and KSSc 36009 (Arachis simpsonii) and B-genome accession KGBSPSc 30076 (A. ipaensis) were the most closely related to both Arachis hypogaea and Arachis monticola. This finding suggests their involvement in the evolution of the tetraploid peanut species.  相似文献   

6.
用SSR和AFLP技术分析花生抗青枯病种质遗传多样性的比较   总被引:10,自引:0,他引:10  
由Ralstonia solanacearum E.F.Smith引起的青枯病是若干亚洲和非洲国家花生生产的重要限制因子,利用抗病品种是防治这一病害最好的措施。虽然一大批抗青枯病花生种质资源材料已被鉴定出来,但对其遗传多样性没有足够的研究,限制了在育种中的有效利用。本研究以31份对青枯病具有不同抗性的栽培种花生种质为材料,通过简单序列重复(SSR)和扩增片段长度多态性(AFLP)技术分析了它们的遗传多样性。通过78对SSR引物和126对AFLP引物的鉴定,筛选出能显示抗青枯病种质多态性的SSR引物29对和AFLP引物32对。所选用的29对多态性SSR引物共扩增91条多态性带,平均每对引物扩增3.14条多态性带;32对多态性AFLP引物共扩增72条多态性带,平均扩增2.25条多态性带。在所筛选引物中,4对SSR引物(14H06,7G02,3A8,16C6)和1对AFLP引物(P1M62)检测花生多态性的效果优于其他引物。SSR分析获得的31个花生种质的遗传距离为0.12-0.94,平均为0.53,而AFLP分析获得的遗传距离为0.06~0.57,平均为0.25,基于SSR分析的遗传距离大于基于AFLP分析的遗传距离,疏枝亚种组的遗传分化相对大于密枝亚种组。基于两种分析方法所获得的聚类结果基本一致,但SSR数据聚类结果与栽培种花生的形态分类系统更为吻合。根据分析结果,对构建青枯病抗性遗传图谱群体的核心亲本和抗性育种策略提出了建议。  相似文献   

7.
用19个RAPD引物和12个ISSR引物对14份野牛橡胶树种质和我国的37份栽培品种进行了遗传多样性分析。RAPD引物共产生132条带,多态性带占88.6%,相似系数变化范围在0.432—0.947。ISSR引物其产生101条带,多态性带占87.1%,相似系数为0.505—0.941。平均基因杂合度分析表明野生种质比栽培品种具有较高的遗传多样性。根据UPGMA法对51份材料进行聚类分析,结果表明,ISSR分析中所有材料可分为2类:第一类为野生种质,第二类为栽培品种:而RAPD分析中野牛种质和栽培品种不能被分为明显的两人类。虽然ISSR和RAPD的聚类分析结果存在差异,但对两种方法进行的相关分析表明,他们之间仍存在极显著相关性,相关系数为0.574。品种PR107、热研217等一些栽培品种可以通过特异带在51份供试材料中被区分开。这些结果可以对橡胶树的育种上作起到一定的指导作用,同时RAPD和ISSR技术也是进行橡胶树品种鉴定和遗传多样性研究的有效手段。  相似文献   

8.
The 5S and the 18S-25S rRNA genes were physically mapped by fluorescent in situ hybridization (FISH) in all botanical varieties of cultivated peanut Arachis hypogaea (2n = 4x = 40), in the wild tetraploid A. monticola, and in seven wild diploid species considered as putative ancestors of the tetraploids. A detailed karyotype analysis including the FISH signals and the heterochromatic bands was carried out. Molecular cytogenetic landmarks are provided for the construction of a FISH-based karyotype in Arachis species. The size, number, and chromosome position of FISH signals and heterochromatic bands are similar in all A. hypogaea varieties and A. monticola, but vary among the diploid species. Genome constitution of the species is discussed and several chromosome homeologies are established. The bulk of the chromosome markers mapped, together with data on geographical distribution of the taxa, suggest that peanut originated upon domestication of A. monticola and evidence that the diploids A. duranensis and A. ipaensis are the most probable ancestors of both tetraploid species. Allopolyploidy could have arisen by a single event or, if by multiple events, always from the same diploid species.  相似文献   

9.
利用RAPD引物和ISSR引物分析我国24份花生栽培种材料的遗传多样性.结果表明:所选的RAPD引物和ISSR引物中分别有13条引物和10条引物扩增出了清晰并可重复的条带,共扩增出123条带和87条带,平均每条引物扩增出9.5条带和8.7条带,其中多态性带分别占条带总数的47.15%和57.47%,平均每条引物扩增出4...  相似文献   

10.
Large-scale development of expressed sequence tag simple sequence repeat (EST-SSR) markers was performed in peanut (Arachis hypogaea L.) to obtain more informative genetic markers. A total of 10,102 potential non-redundant EST sequences, including 3,445 contigs and 6,657 singletons, were generated from cDNA libraries of the gynophore, roots, leaves and seedlings. A total of 3,187 primer pairs were designed on flanking regions of SSRs, some of which allowed one and two base mismatches. Among the 3,187 markers generated, 2,540 (80%) were trinucleotide repeats, 302 (9%) were dinucleotide repeats, and 345 (11%) were tetranucleotide repeats. Pre-polymorphic analyses of 24 Arachis accessions were performed using 10% polyacrylamide gels. A total of 1,571 EST-SSR markers showing clear polymorphisms were selected for further polymorphic analysis with a Fluoro-fragment Analyzer. The 16 Arachis accessions examined included cultivated peanut varieties as well as diploid species with the A or B genome. Altogether 1,281 (81.5%) of the 1,571 markers were polymorphic among the 16 accessions, and 366 (23.3%) were polymorphic among the 12 cultivated varieties. Diversity analysis was performed and the genotypes of all 16 Arachis accessions showed similarity coefficients ranging from 0.37 to 0.97. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9604-8) contains supplementary material, which is available to authorized users.  相似文献   

11.
Even though lentil has been an important food legume for centuries, genetic studies in lentil are still in their infancy. Genetic diversity and relationships among wild Lens species from Turkey has seldom been investigated. Additionally, a limited number of simple sequence repeat (SSR) markers have been developed for use in breeding and genetic studies of lentil crop. In this study, molecular characterization of 50 accessions mostly from Turkey, belonging to 6 wild and 1 cultivated Lens species, was performed using newly developed inter-primer binding site (iPBS) retrotransposons and inter-SSR (ISSR) markers. The 10 iPBS primers generated a total of 151 scorable bands, of which 150 were polymorphic (99.3%) with an average of 15.0 polymorphic fragments per primer. The 10 ISSR primers detected 138 scorable bands showing 100% polymorphism, with an average of 13.5 bands per primer. The average polymorphism information content (PIC) value for ISSR markers (0.97) was higher than that for iPBS markers (0.90). Lens orientalis was found to be the most diverse species, raising the possibility of wide crosses with cultivated species Lens culinaris. Cultivated varieties also showed high level of polymorphism, at 82.92% and 51.92% with ISSR and iPBS markers, respectively. Lens lamottei and Lens tomentosus were found as the least polymorphic species using both marker systems. The grouping of accessions and species within clusters were almost similar when iPBS and ISSR graphs were compared. Our data also suggested the role of iPBS-retrotransposons as ‘a universal marker’ for molecular characterization of wild and cultivated Lens species.  相似文献   

12.
Cultivated peanut possesses an extremely narrow genetic basis. Polymorphism is considerably difficult to identify with the use of conventional biochemical and molecular tools. For the purpose of obtaining considerable DNA polymorphisms and fingerprinting cultivated peanut genotypes in a convenient manner, start codon targeted polymorphism technique was used to study genetic diversity and relatedness among 20 accessions of four major botanical varieties of peanut. Of 36 primers screened, 18 primers could produce unambiguous and reproducible bands. All 18 primers generated a total of 157 fragments, with a mean of 8.72 ranging from 4 to 17 per primer. Of 157 bands, 60 (38.22%) were polymorphic. One to seven polymorphic bands were amplified per primer, with 3.33 polymorphic bands on average. Polymorphism per primer ranged from 14.29 to 66.67%, with an average of 36.76%. The results revealed that not all accessions of the same variety were grouped together and high genetic similarity was detected among the tested genotypes based on cluster analysis and genetic distance analysis, respectively. Further, accession-specific markers were observed in several accessions. All these results demonstrated the following: (1) start codon targeted polymorphism technique can be utilized to identify DNA polymorphisms and fingerprint cultivars in domesticated peanut, and (2) it possesses considerable potential for studying genetic diversity and relationships among peanut accessions.  相似文献   

13.
The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great potential to increase the oil content in A. hypogaea by using the wild Arachis germplasm.  相似文献   

14.
15.
Arachis hypogaea is a natural, well-established allotetraploid (AABB) with 2n = 40. However, researchers disagree on the diploid genome donor species and on whether peanut originated by a single or multiple events of polyploidization. Here we provide evidence on the genetic origin of peanut and on the involved wild relatives using double GISH (genomic in situ hybridization). Seven wild diploid species (2n = 20), harboring either the A or B genome, were tested. Of all genomic DNA probe combinations assayed, A. duranensis (A genome) and A. ipaensis (B genome) appeared to be the best candidates for the genome donors because they yielded the most intense and uniform hybridization pattern when tested against the corresponding chromosome subsets of A. hypogaea. A similar GISH pattern was observed for all varieties of the cultigen and also for A. monticola. These results suggest that all presently known subspecies and varieties of A. hypogaea have arisen from a unique allotetraploid plant population, or alternatively, from different allotetraploid populations that originated from the same two diploid species. Furthermore, the bulk of the data demonstrated a close genomic relationship between both tetraploids and strongly supports the hypothesis that A. monticola is the immediate wild antecessor of A. hypogaea.  相似文献   

16.
Hawthorn ( Crataegus spp.) has a long history as an ornamental and a source of medicine. We report the use of random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers to determine genetic relationships in the genus Crataegus . Twenty-eight accessions, including eight species ( Crataegus pinnatifida , Crataegus bretschneideri , Crataegus maximowiczii , Crataegus kansuensis , Crataegus altaica , Crataegus songarica , Crataegus dahurica and Crataegus sanguinea ) and two botanical varieties ( C. pinnatifida var. major and C. maximowiczii var. ninganensis ) were analysed. Twelve RAPD primers reproducibly and strongly amplified 128 fragments of which 116 were polymorphic; similarly, 13 ISSR primers generated 127 products of which 119 were polymorphic. Dendrograms based on unweighted pair group method with arithmetic average analysis were constructed from both the RAPD and the ISSR data. Similarity coefficient based on RAPD and ISSR markers ranged from 0.22 to 0.98 and 0.23 to 0.98, respectively. The range in similarity coefficient indicated that the genus has a high level of genetic diversity. The Mantel test on the similarity matrices produced by RAPD and ISSR markers gave r  = 0.86, showing high correlation between RAPD and ISSR markers in their ability to detect genetic relationships between Crataegus accessions. RAPD and ISSR appear to be reliable methods for the analysis of genetic relationships among hawthorns.  相似文献   

17.
Ren TH  Chen F  Zou YT  Jia YH  Zhang HQ  Yan BJ  Ren ZL 《Génome》2011,54(4):316-326
Eleven weedy or wild species or subspecies of the genus Secale L. were compared with a set of cultivated rye accessions, based on inter-simple sequence repeat (ISSR) markers to analyze their phylogenetic relationships. A total of 846 bands were amplified from reactions using 12 screening primers, including 79 loci with a mean of 10.1 alleles per locus. The number of amplified bands for each primer ranged from 12 to 134, with a mean of 70.5 amplified bands per primer. The presence and distribution of amplified bands in different accessions demonstrate that a rapid evolutionary trend of microsatellite repeats occurred during the speciation process from the perennial wild form to annual cultivated rye. In addition, variation, amplification, and deletion of microsatellites in genomes revealed phylogenetic relationships in the genus Secale. Analysis of the presence, number, and distribution of amplified bands in genomes, as well as the comparison with genetic similarity (GS) indices based on ISSR, indicate that Secale strictum subsp. africanum (Stapf) Hammer, Secale strictum anatolicum (Boiss.) Hammer, Secale sylvestre Host, and Secale strictum subsp. strictum (C. Presl) Hammer emerged in succession from a common ancestor of Secale following geographic separation and genetic differentiation. The annual weedy rye evolved from S. strictum subsp. strictum, which was domesticated as present-day cultivated rye. Data from ISSR analyses separated all investigated accessions of the genus Secale into three distinct groups. These results support the division of the genus Secale into three species: the annual wild species S. sylvestre; the perennial wild species S. strictum, including several differential subspecies forms such as strictum, africanum, and anatolicum; and S. cereale, including cultivated and weedy rye as subspecies forms.  相似文献   

18.
Lack of requisite genetic variation in cultivated species has necessitated systematic collection, documentation and evaluation of wild Cicer species for use in chickpea variety improvement programs. Cicer arietinum has very narrow genetic variation, and the use of a wild relative in chickpea breeding could provide a good opportunity for increasing the available genetic variation of cultivated chickpea. Genetic diversity and the relationship of 71 accessions, from the core area of chickpea origin and domestication (Southeastern Turkey), belonging to five wild annual species and one cultivated species (Cicer arietinum) were analysed using iPBS-retrotransposon and ISSR markers. A total of 136 scorable bands were detected using 10 ISSR primers among 71 accessions belonging to 6 species, out of which 135 were polymorphic (99.3 %), with an average of 13.5 polymorphic fragments per primer, whereas iPBS detected 130 bands with 100 % polymorphism with an average of 13.0 bands per primer. C. echinospermum and C. pinnatifidum were the most diverse among species, whereas C. arietinum exhibited lower polymorphism. The average polymorphism information contents (PIC) value for both marker systems was 0.91. The clustering of the accessions and species within groups was almost similar, when iPBS and ISSR NeighborNet (NNet) planar graphs were compared. Further detailed studies are indispensable in order to collect Cicer germplasm, especially C. reticulatum, from southeastern Turkey particularly, from Karacada? Mountain for preservation, management of this species, and to study their genetic diversity at molecular level. This study also demonstrates the utility and role of iPBS-retrotransposons, a dominant and ubiquitous part of eukaryotic genomes, for diversity studies in wild chickpea and in cultivated chickpea.  相似文献   

19.
利用代表花生基础资源的核心种质分析花生高油酸资源的分布和遗传多样性,结果表明:在花生核心种质中油酸含量高于57%的种质40份,主要分布在密枝亚种(普通型25份和龙生型8份),少数分布在疏枝亚种(珍珠豆型6份和中间型1份); 除了10份资源来源于国外(ICRISAT 7 份,美国1份,日本1份和韩国1份,其他种质资源来源于中国12个省市。 同时发现高油酸种质中3份资源的含油量在55%左右,分别是Zh.h4094(油酸66.70%,含油量54.99%), Zh.h4029(油酸63.50%,含油量55.58%)和Zh.h4319(油酸59.70%,含油量56.04%; 小区产量超过3000 kg/ha 有10 份种质,前三位分别是Zh.h0883 (4086.06kg/ha), Zh.h1182(3955.00kg/ha)和 Zh.h2910 (3741.00kg/ha)。基于植物学和产量性状分析,前5个主成份(PC)可以解释81.17% 的变异。聚类分析,在域值为0.1942时,可分为6个组。 因此中国花生核心种质中高油酸种质存在丰富的遗传多样性,而且分布较广,高油酸种质的获得对花生高油酸育种提供基础材料。  相似文献   

20.
In order to estimate genetic relationships of the AA-genome Oryza species, RAPD and SSR analyses were performed with 45 accessions, including 13 cultivated varieties (eight Oryza sativa and five Oryza glaberrima) and 32 wild accessions (nine Oryza rufipogon, seven Oryza nivara, three Oryza glumaepatula, four Oryza longistaminata, six Oryza barthii, and three Oryza meridionalis). A total of 181 clear and repeatable bands were amplified from 27 selected RAPD primers, and 101 alleles were detected from 29 SSR primer pairs. The dendrogram constructed using UPGMA from a genetic-similarity matrix based on the RAPD data supported the clustering of distinct five groups with a few exceptions: O. rufipogon/O. nivara/O. meridionalis, O. barthii/O. glaberrima, O. glumaepatula, O. sativa and O. longistaminata. The dendrogram based on the SSR analysis showed a more-complicated genetic variation pattern, but the O. longistaminata and O. barthii/O. glaberrima accessions were consistently separated from all other accessions, indicating significant differentiation of the African AA-genome Oryza species. For accessions in the O. rufipogon/O. nivara/O. sativa complex, it is apparent that geographical isolation has played an important role in differentiation of the Asian AA-genome Oryza taxa. It is also demonstrated from this study that both RAPD and SSR analyses are powerful methods for detecting polymorphisms among the different AA-genome Oryza accessions. However, the RAPD analysis provides a more-informative result in terms of the overall genetic relationships at the species level compared to the SSR analysis. The SSR analysis effectively reveals diminutive variation among accessions or individuals within the same species, given approximately the same number of primers or primer-pairs used in the studies.Communicated by Q. Zhang  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号