首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   34篇
  国内免费   1篇
  2021年   5篇
  2020年   5篇
  2017年   4篇
  2016年   13篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   16篇
  2011年   31篇
  2010年   17篇
  2009年   30篇
  2008年   28篇
  2007年   26篇
  2006年   18篇
  2005年   24篇
  2004年   14篇
  2003年   11篇
  2002年   18篇
  2000年   13篇
  1999年   10篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1991年   12篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   11篇
  1979年   11篇
  1978年   9篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1972年   8篇
  1971年   11篇
  1969年   6篇
  1966年   6篇
  1965年   3篇
排序方式: 共有529条查询结果,搜索用时 138 毫秒
1.
2.
Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele.  相似文献   
3.
Changes in the ultrastructure of Trichoderma viride during growth in shake cultures on cellobiose and cellulose fibres were examined. Electron micrographs of thin sections of germinating conidia, septate hyphae with ascomycete pores and other cell organelles are presented. Extensive autolysis of hyphae was observed after growth for 20 h on cellobiose. The fungus grew in the lumina and within the walls of cellulose fibres. The hyphae followed the directions of the laminar structure but did not grow across them. The observations indicated that the hyphae penetrated the fibres by causing cracks and by dissolving enzymatically the cellulose.  相似文献   
4.
Summary A rapid, economical method is described that detects presumptive base-pair substitution and frameshift mutations in the yeast,Saccharomyces cerevisiae.Research supported by the Atomic Energy Commission under contract number AT(11-1)-1314 with Illinois State University (Report number COO-1314-17).  相似文献   
5.
p53 coordinates the expression of an intricate network of genes in response to stress signals. Sequence-specific DNA binding is essential for p53-mediated tumor suppression. We evaluated the impact of single-nucleotide polymorphisms (SNPs) in p53 response elements (p53RE) on DNA binding and gene expression in response to DNA damage. Using a bioinformatics approach based on incorporating p53 binding strength into a position weight matrix, we selected 32 SNPs in putative and validated p53REs. The microsphere assay for protein–DNA binding (MAPD) and allele-specific expression analysis was employed to assess the impact of SNPs on p53-DNA binding and gene expression, respectively. Comparing activated p53 binding in nuclear extracts from doxorubicin- or ionizing radiation (IR)-treated human cells, we observed little difference in binding profiles. Significant p53 binding was observed for most polymorphic REs and several displayed binding comparable to the p21 RE. SNP alleles predicted to lower p53 binding indeed reduced binding in 25 of the 32 sequences. Chromatin immunoprecipitation-sequencing in lymphoblastoid cells confirmed p53 binding to seven polymorphic p53 REs in response to doxorubicin. In addition, five polymorphisms were associated with altered gene expression following doxorubicin treatment. Our findings demonstrate an effective strategy to identify and evaluate SNPs that may alter p53-mediated stress responses.  相似文献   
6.
The mechanism by which a disordered peptide nucleates and forms amyloid is incompletely understood. A central domain of β‐amyloid (Aβ21–30) has been proposed to have intrinsic structural propensities that guide the limited formation of structure in the process of fibrillization. In order to test this hypothesis, we examine several internal fragments of Aβ, and variants of these either cyclized or with an N‐terminal Cys. While Aβ21–30 and variants were always monomeric and unstructured (circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMRS)), we found that the addition of flanking hydrophobic residues in Aβ16–34 led to formation of typical amyloid fibrils. NMR showed no long‐range nuclear overhauser effect (nOes) in Aβ21–30, Aβ16–34, or their variants, however. Serial 1H‐15N‐heteronuclear single quantum coherence spectroscopy, 1H‐1H nuclear overhauser effect spectroscopy, and 1H‐1H total correlational spectroscopy spectra were used to follow aggregation of Aβ16–34 and Cys‐Aβ16–34 at a site‐specific level. The addition of an N‐terminal Cys residue (in Cys‐Aβ16–34) increased the rate of fibrillization which was attributable to disulfide bond formation. We propose a scheme comparing the aggregation pathways for Aβ16–34 and Cys‐Aβ16–34, according to which Cys‐Aβ16–34 dimerizes, which accelerates fibril formation. In this context, cysteine residues form a focal point that guides fibrillization, a role which, in native peptides, can be assumed by heterogeneous nucleators of aggregation.  相似文献   
7.
As bald eagle populations recover, defining major sources of mortality provides managers important information to develop management plans and mitigation efforts. We obtained data from necropsies on 1,490 dead bald eagles (Haliaeetus leucocephalus) collected in Michigan, USA, conducted from 1986 to 2017 to determine causes of death (COD). Trauma and poisoning were the most common primary COD categories, followed by disease. Within trauma and poisoning, vehicular trauma (n = 532) and lead poisoning (n = 176) were the leading COD subcategories, respectively. Females comprised a greater number of carcasses for most COD diagnoses. The proportion of trauma and poisoning CODs significantly increased in the last few years of the study in comparison to a select few years at the beginning. Trauma CODs were greater in autumn months during whitetail deer (Odocoileus virginianus) breeding and hunting seasons and in February, when aquatic foraging is unavailable and eagles are likely forced to scavenge along roadsides. Poisoning CODs were greatest in late winter and early spring months, when deer carcasses containing lead ammunition, which are preserved by the cold weather, also become a supplemental food source. The major infectious disease CODs, West Nile virus and botulism (Clostridium botulinum type E), were more prevalent during summer months. We recommend moving road-killed carcasses, especially white-tailed deer, from the main thoroughfare to the back of the right-of-way, and the transition from lead ammunition and fishing tackle to non-toxic alternatives to decrease these main anthropogenic sources of mortality for bald eagles, and other scavenger species. © 2020 The Wildlife Society.  相似文献   
8.

Background  

The homologous recombination (HR) pathway is vital for maintaining genomic integrity through the restoration of double-stranded breaks and interstrand crosslinks. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) are essential for this process in vertebrates, and the RAD51D paralog is unique in that it participates in both HR repair and telomere maintenance. RAD51D is also known to directly interact with the RAD51C and XRCC2 proteins. Rad51d splice variants have been reported in mouse and human tissues, supportive of a role for alternative splicing in HR regulation. The present study evaluated the interaction of the Rad51d splice isoform products with RAD51C and XRCC2 and their expression patterns.  相似文献   
9.

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T?>?G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T?>?G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.

  相似文献   
10.
The genetic composition of a population reflects several aspects of the organism and its environment. The Icelandic Arctic fox population exceeds 8000 individuals and is comprised of both coastal and inland foxes. Several factors may affect within-population movement and subsequent genetic population structure. A narrow isthmus and sheep-proof fences may prevent movement between the north-western and central part and glacial rivers may reduce movement between the eastern and central part of Iceland. Moreover, population density and habitat characteristics can influence movement behaviour further. Here, we investigate the genetic structure in the Icelandic Arctic fox population ( n  = 108) using 10 microsatellite loci. Despite large glacial rivers, we found low divergence between the central and eastern part, suggesting extensive movement between these areas. However, both model- and frequency-based analyses suggest that the north-western part is genetically differentiated from the rest of Iceland (FST = 0.04, DS = 0.094), corresponding to 100–200 generations of complete isolation. This suggests that the fences cannot be the sole cause of divergence. Rather, the isthmus causes limited movement between the regions, implying that protection in the Hornstrandir Nature Reserve has a minimal impact on Arctic fox population size in the rest of Iceland.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 18–26.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号