首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
内蒙古主要草原类型植物物候对气候波动的响应   总被引:2,自引:0,他引:2  
苗百岭  梁存柱  韩芳  梁茂伟  张自国 《生态学报》2016,36(23):7689-7701
物候是气候变化的指示者,由于不同地区植被类型不同,导致其对气候波动的响应方式不同。利用2004—2013年内蒙古草原区生态监测站群落优势种物候观测资料和同时段的气象资料,分析了不同草原类型区优势种物候期变化及其与气候因子间的相互关系,结果表明:(1)2004—2013年内蒙古草原区各时段气候波动趋势均不显著,返青前以气温降低、降水增加趋势为主;黄枯前草甸草原、典型草原以气温降低、降水增加趋势为主,荒漠草原变化趋势相反。(2)2004—2013年典型草原植物返青期平均提前4.01 d,黄枯推后10.35 d,生长季延长14.36 d;草甸草原返青期提前2.04 d,黄枯期推后12.68 d,生长季延长14.72 d;荒漠草原物候变化趋势最小,返青期平均提前了1.32 d,黄枯期平均推后了9.58 d,生长季延长了10.90 d。(3)内蒙古草原区植物返青期主要受气温波动的影响,草甸草原返青期与前3个月平均气温的负相关最为显著,气温每升高1℃,返青期约提前1.123 d;典型草原、荒漠草原返青期与前2个月平均气温的负相关最为显著气,气温每升高1℃,返青期约提前1.137 d和1.743 d。(4)典型草原区植物黄枯期受前1—2月平均气温和累积降水的共同影响,与夏季平均气温和当月降水量的相关最为显著,夏季气温每升高1℃,黄枯期约提前2.250 d,当月降水每增加1 mm,黄枯期约推后0.119 d。草甸草原、荒漠草原植物黄枯期与各时段降水、气温的相关均不显著,影响黄枯机制比较复杂。  相似文献   

2.
基于MODIS植被指数的藏北高原植被物候空间分布特征   总被引:1,自引:0,他引:1  
基于非对称高斯拟合算法重建了2001-2010年的MODIS EVI时间序列影像,利用动态阈值法提取2001-2010年各年藏北高原植被覆盖的关键物候参数(生长季峰值、返青期、枯黄期及生长季长度),并在此基础上分析了藏北高原植被覆盖的物候参数空间分布特征.结果表明:植被生长季EVImax、物候返青期及生长季长度均表现出从东南到西北过渡的水平地带性与东南高山峡谷区的垂直地带性相结合的空间格局;对于不同地表覆盖类型,EVImax、返青期、生长季长度均呈现农林混合区>林灌区>草甸>草原>荒漠草原的特征,枯黄期除农林混合区较迟外,其他4种地表覆盖类型时间接近;对于不同气候区划,植被生长季EVImax、返青期、生长季长度表现出半湿润区→半干旱区→干旱区的递变规律;研究区内植被物候受地形影响较大,随着海拔的升高,植被生长季EVImax降低、物候返青期推迟、生长季长度减小.  相似文献   

3.
内蒙古不同类型草原光合植被覆盖度对降水变化的响应   总被引:2,自引:0,他引:2  
王举凤  何亮  陆绍娟  吕渡  黄涛  曹琦  张晓萍  刘宝元 《生态学报》2020,40(16):5620-5629
植被是影响土壤侵蚀过程的重要因素。论文基于MODIS遥感数据和同期降水数据,用相关和回归分析方法从不同时间尺度揭示了内蒙古草甸草原、典型草原和荒漠草原2002—2016年光合植被覆盖度(Fractional Photosynthetic Vegetation,f_(PV))的变化规律及其对降水变化的响应。结果表明:(1)2002—2016年间多年平均f_(PV)草甸草原为46.5%,典型草原和荒漠草原分别为36.3%和22.4%;草甸草原f_(PV)随时间变化呈不显著增长趋势(线性变化斜率为0.29%/a),典型草原和荒漠草原f_(PV)呈不显著下降趋势(线性变化斜率分别为-0.04%/a和-0.21%/a);相应时期年降水量随时间变化都呈现不显著波动上升趋势。(2)内蒙古草原的月植被覆盖度对月降水量存在明显的1—2个月滞后效应和显著的累积效应,且表现出草原类型越干旱,滞后效应越明显的特征;相比草甸草原和典型草原,荒漠草原植被对降水量变化更加敏感。(3)内蒙古3类草原年平均植被覆盖度对降水量的响应,均表现出年、季、月尺度上分别受当年降水量、生长季降水量以及6、7、8月份降水量的显著影响的特征;3类草原年植被覆盖度与生长季降水线性拟合结果都较好,内蒙古3种草原类型的年植被覆盖度与降水量具有的强相关性,可为区域土壤侵蚀动态评价提供科学依据。  相似文献   

4.
气候变化对内蒙古草原典型植物物候的影响   总被引:7,自引:0,他引:7  
自然物候期是气候变化最直观的植物信号记录,自然物候变化是气候与自然环境变化的综合指标。基于1983—2009年内蒙古草甸草原、典型草原和荒漠草原区典型植物马兰草、霸王、贝加尔针茅和羊草生长期物候观测资料和同时段的气象观测资料,利用数理统计等方法,分析了不同草原区典型植物物候期与气候要素间的相互关系,结果表明:(1)1983—2009年内蒙古草原区植物物候期总体呈提前趋势,但地域差异明显,典型草原区植物萌芽返青、开花及黄枯期等物候提早趋势最为明显,说明不同草原区植物物候对气候变暖的区域响应不同。(2)内蒙古草原区植物物候期与气候变化密切相关。春季3—5月累积气温与植物萌芽返青期和开花期呈显著负相关,与日照时数为正相关,降水量对其影响不同草原区差异较大。荒漠草原和典型草原区植物黄枯期早晚与黄枯前1—2个月平均气温呈显著负相关,草甸草原区植物黄枯期与前1—2个月的降水量和日照时数有关,与气温关系不显著。(3)随着气候变暖,马兰草生长期缩短,霸王、贝加尔针茅和羊草生长期延长,其中典型草原区主要植物针茅生长季延长趋势最为明显,荒漠草原次之,草甸草原延长最少。  相似文献   

5.
徐玲玲 《生态学报》2020,40(24):9120-9128
长期以来,研究植被物候变化与气候因子的关系多基于线性模型,事实上植被物候对气候变化的响应可能是非线性的。以1984-2017年内蒙古中西部温性典型草原和温性草原化荒漠长时间序列植被物候观测资料为基础,分析了近40年来气候变化背景下不同草地类型优势植物返青期变化特征及其对春季降水的非线性响应。结果表明:(1)温性典型草原冷蒿返青期主要受水分控制,与春季降水量表现为开口向下的二次函数关系。气候暖干化导致的水分亏缺是冷蒿返青期呈极显著延迟趋势(1.32 d/a)的主要原因;春季降水量超过60 mm时,冷蒿返青期表现出由延迟转变为提前的趋势。(2)温性草原化荒漠猫头刺返青期主要受热量控制。受春季显著升温影响,猫头刺返青期呈极显著提前趋势(0.63 d/a)。春季降水增多利于猫头刺提早返青,二者表现为开口向上的二次函数关系;春季降水量超过40 mm时,猫头刺返青期对降水的响应程度逐渐降低,这可能与荒漠植物本身的生理特性有关。  相似文献   

6.
青海湖流域草地植被动态变化趋势下的物候时空特征   总被引:2,自引:0,他引:2  
植被物候不仅直接受气候变化的影响,还反作用于气候变化。因此,明确植被物候变化的驱动机制对于进一步研究气候变化与物候的相互作用具有重要的意义。选取位于青藏高原东北部的青海湖流域,利用MODIS 16d增强植被指数(EVI)合成数据,来分析草地物候时空格局特征以及不同EVImax变化趋势下草地物候期(返青期、枯黄期及生长季)的变化趋势。研究得到以下结果:(1)在气候变化和人类活动等因素的共同作用下,青海湖流域的EVImax变化呈现多元化趋势,EVImax增加、不变、降低趋势并存;(2)1990—2012年期间,流域内温度上升、降水量增加趋势显著,温度上升速率为0.42—0.83℃/10a,降水量增加速率为43.20—44.68 mm/10a。刚察、天峻气象站草地返青期在2001—2012年期间呈现延迟趋势,枯黄期变化趋势不显著,生长季呈现缩短趋势;(3)流域内草地返青从4月下旬持续到6月上旬,枯黄期从8月中旬持续到10月上旬,青海湖东岸、南岸、布哈河入湖口区域以及流域西部山坡和平坦的谷底地区牧草最早进入返青期,返青空间格局呈现由湖岸向四周高海拔地区延伸趋势,草地枯黄空间格局与返青期相反;(4)不同EVImax变化趋势下,草地返青期、枯黄期、生长季变化趋势表现出差异。草地EVImax降低趋势下,牧草返青期呈现提前趋势,枯黄期延迟,生长季延长;EVImax增加趋势下,牧草返青期延迟,枯黄期变化不明显,生长季缩短;EVImax不变区、农田的返青与枯黄期变化趋势并不明显,但是农田生长季缩短趋势较明显。  相似文献   

7.
中国西北部草地植被降水利用效率的时空格局   总被引:3,自引:0,他引:3  
穆少杰  游永亮  朱超  周可新 《生态学报》2017,37(5):1458-1471
植被降水利用效率(PUE)是评价干旱、半干旱地区植被生产力对降水量时空动态响应特征的重要指标。利用光能利用率CASA(Carnegie-Ames-Stanford Approach)模型估算了2001—2010年中国西北七省草地植被净初级生产力(NPP),结合降水量的空间插值数据,分析了近十年草地植被PUE的空间分布、主要植被类型的PUE,及其时空格局的驱动因素。结果表明:(1)2001—2010年西北七省草地植被的平均PUE为0.68 g C m~(-2)mm~(-1)。在温带草地各类型中,PUE的大小顺序为草甸草原灌丛典型草原荒漠草原荒漠,各类型草地PUE之间差异显著;对于高寒草地而言,高寒草原的PUE显著高于高寒草甸;(2)温带草地PUE的空间分布与年降水量的关系呈抛物线形状(R~2=0.65,P0.001),PUE峰值出现在年降水量P=472.9 mm的地区;荒漠地区植被PUE的空间分布与年降水量的关系同样呈抛物线形状(R~2=0.63,P0.001),PUE峰值出现在年降水量P=263.2mm的地区;对于高寒草地而言,年降水量100 mm以下地区植被PUE变异较大,年降水量大于100 mm的地区植被PUE的空间分布随降水量的变化呈抛物线形状(R~2=0.47,P0.001),PUE峰值出现在P=559.2 mm的地区;(3)不同降水量区域,植被PUE的年际波动与气候因子的关系也有较大差别。在年降水量为200—1000 mm的地区,草地PUE的年际波动与年降水量的变化呈正相关;在年降水量高于1050 mm的地区,草地PUE的年际波动与年均温的相关性较强,相关系数最高可达到0.4。  相似文献   

8.
梁大林  唐海萍 《生态学报》2022,42(1):287-300
高寒草甸和高寒草原作为青藏高原两种重要植被类型,研究其植被变化与气候变化相关性,有助于为青藏高原两种高寒草地生态系统应对全球气候变化管理提供参考。以位于同纬度的三江源高寒草甸和阿里高寒草原为研究对象,基于植被净初级生产力(Net Primary Productivity, NPP)变化表征植被变化,利用NPP数据和气象数据,分别分析两地2000—2017年植被NPP、降水和气温时空变化差异;利用Sen+Mann-Kendall趋势检验,研究两种高寒草地气候与植被净初级生产力变化趋势;以县域统计年鉴牛羊肉产量表征放牧强度,研究放牧活动对高寒草地植被变化的影响;通过Pearson相关和偏相关分析方法,分别研究降水和气温对两种高寒草地植被NPP变化影响差异。研究结果表明:(1)2000—2017年三江源高寒草甸和阿里高寒草原区年平均气温以0.085℃/a和0.084℃/a的趋势上升,降水以平均每年3.87 mm和2.23 mm的趋势增加,高寒草甸区变暖变湿速率较高寒草原区快。(2)三江源高寒草甸和阿里高寒草原植被NPP均呈现由东南向西北逐渐降低空间格局;2000—2017年高寒草甸区57.7...  相似文献   

9.
为厘清三江源地区草地植被返青及其与气候因子的关系。以三江源地区为研究对象,选取该区2003—2012年日照时数、平均气温和降水以及草地植被返青资料,采用线性倾向率和Pearson相关分析法,较为系统地分析探讨了近10年三江源地区气候变化趋势及其与草地植被返青的相关关系。结果表明:(1)近10年来,三江源地区草地植被返青呈"提前—推迟—再提前—再推迟"的变化趋势。(2)海拔4000 m以上的地区草地植被返青期极差较大,相差约40 d;且高寒草原和高寒荒漠草地植被返青时间突变最为显著。(3)三江源地区草地植被返青日期与返青期前30 d光、温、水的相关性较好。除局部地区草地植被返青与光、温、水呈显著负相关外,其余地区均显著正相关。以上研究结果表明,三江源地区草地植被返青期不是由单一因素决定,而是光照、气温和降水等因素综合作用的结果。  相似文献   

10.
气候变化对内蒙古鄂温克旗典型草原植物物候的影响   总被引:1,自引:0,他引:1  
肖芳  桑婧  王海梅 《生态学报》2020,40(8):2784-2792
植物物候作为气候变化敏感的指示指标,已成为全球气候变化研究的焦点。利用内蒙古典型草原区鄂温克牧业气象试验站1959—2017年的气候资料和1983—2017年的植物物候观测资料,采用趋势倾向率和逐步回归等方法,分析了鄂温克旗气候变化特征,代表性牧草大针茅和羊草返青期、开花期、黄枯期及生长季的变化趋势,并通过偏相关分析探讨了气温、降水和日照时数与牧草生育期的关系,建立了主要牧草物候期的气候模型。结果表明:(1)鄂温克旗近60年平均气温呈极显著波动增加趋势,年降水量和年日照时数的变化很小;(2)30多年来,鄂温克旗大针茅和羊草返青期总体呈推迟趋势,倾向率分别为2.2 d/10a和1.4 d/10a;开花期的变化趋势不明显;黄枯期分别以2.8 d/10a和1.5 d/10a的趋势提前;生长季长度呈明显缩短趋势;(3)3月和4月气温是影响研究区牧草返青最主要的气候因子,气温升高返青期提前;前2个月降水量对大针茅开花期的影响较大;气温升高使得黄枯期提前,而降水量增加则使得黄枯期推迟。  相似文献   

11.
藏北高原植被物候时空动态变化的遥感监测研究   总被引:9,自引:0,他引:9       下载免费PDF全文
利用遥感数据提取的植被物候格局及时空变化特征能很好地反映区域尺度上植被对全球变化的响应。目前关于青藏高原地区植被物候的少量报道基本上是基于物候站点的观测记录展开分析的。该文基于非对称高斯拟合算法重建了藏北高原2001-2010年的MODIS EVI (增强型植被指数)时间序列影像, 然后利用动态阈值法提取整个藏北高原2001-2010年植被覆盖的重要物候信息, 包括植被返青期、枯黄期与生长季长度, 分析了植被物候10年间平均状况的空间分异特征以及年际变化情况, 并结合站点观测记录分析了气温和降水对植被物候变化的影响, 结果表明: (1)藏北高原植被返青期在空间上表现出从东南到西北逐渐推迟的水平地带性与东南高山峡谷区的垂直地带性相结合的特征, 近60%区域的植被返青期提前, 特别是高山地区; (2)植被枯黄期的年际变化不太明显, 大部分地区都表现为自然的年际波动; (3)生长季长度的时空变化特征由植被返青期和枯黄期二者决定, 但主要受返青期提前影响, 大部分地区生长季长度延长; (4)研究区内不同气候区划植被物候的年际变化以那曲高山谷地亚寒带半湿润区和青南高原亚寒带半干旱区的植被返青期提前和生长季延长程度最为明显; (5)基于气象台站数据分析气候变化对物候的影响发现, 返青期提前及生长季延长主要受气温升高的影响, 与降水的关系尚不明确。  相似文献   

12.
 该研究基于Savitzky_Golay滤波算法平滑了1982~1999年NOAA/AVHRR NDVI 时间序列影像,然后利用曲线拟合了锡林郭勒典型草原1982~1999年的每年物候期(返青期、黄枯期)及18年的平均物候期和生长季长度,并对1982~1999年的物候期进行了线性拟合,从而分析了物候期的变化趋势。结果表明:1)1982、1986、1992年的返青期处于正常水平,1985、1988、1989、1991年大部分地区的牧草返青期比正常年份有所提前。1984、1990、1993 年的黄枯期处于正常水平,大部分年份的黄枯期主要处于9月下旬至10月上旬(290~310 d)。2)在整个典型草原,返青期有较大的变异性,而黄枯期变化表现出了锡林郭勒典型草原的西南部较早、中部及东北部较晚的格局,生长季长度的变化格局为西南地区最短,中部地区最长。3)从1982~1999年,不同的地区表现出物候期及生长季长度提前或延迟的变化趋势,返青期大多数地区延迟时间集中在10~20 d,提前日期主要集中在10 d之内。锡林郭勒盟西南地区的黄枯期提前趋势最大。大部分地区的生长季长度变化呈缩短趋势,缩短日期小于 10 d,少部分地区的生长季延长,延长日期主要集中在0~10 d。4)对锡林浩特的物候期研究表明,牧草返青期提前日期小于10 d,黄枯期延迟大约14±5 d,生长季长度延迟大约1 5±5 d。最后利用野外观测数据对锡林浩特牧草返青期的拟合精度作出了评价。  相似文献   

13.
祁连山不同植被类型的物候变化及其对气候的响应   总被引:2,自引:0,他引:2  
贾文雄  赵珍  俎佳星  陈京华  王洁  丁丹 《生态学报》2016,36(23):7826-7840
基于1982—2006年GIMMS NDVI和2000—2014年MODIS NDVI遥感数据,利用double logistic拟合方法提取了1982—2014年祁连山区不同植被的生长季始期、生长季末期和生长季长度3个重要的物候参数,分析了不同植被物候期的时间变化趋势、空间分异特征及对气候因子的响应。结果表明:(1)祁连山区不同植被的生长季始期和生长季末期随年际变化表现出波动提前或推迟,其中沼泽植被的变化波动最大;草甸植被、灌丛植被、阔叶林植被和栽培植被生长季长度出现延长趋势;(2)祁连山区植被生长季始期集中在5月初,其中阔叶林植被生长季开始最早,荒漠植被生长季开始最晚,植被生长季末期集中在9月,栽培植被生长季结束较早,荒漠植被、沼泽植被生长季结束较晚,植被生长季长度集中在110—140 d,其中阔叶林植被、针叶林植被生长季长度较长,而荒漠植被、高山植被生长季长度较短;(3)祁连山植被物候期变化趋势的空间分布表明植被生长季始期、生长季末期主要表现为提前不明显和推迟不明显,生长季长度主要表现为缩短不明显和延长不明显;(4)物候要素与气候要素相关性表明前期温度的积累有利于植被的开始生长,但当年3月的降水量对植被生长季始期同样有重要作用,不同植被生长季末期与8月、9月温度相关性较大,而与10月、11月降水的相关性较大。  相似文献   

14.
青藏高原草地植被覆盖变化及其与气候因子的关系   总被引:74,自引:0,他引:74       下载免费PDF全文
为揭示气候变化对青藏高原草地生态系统的影响及其生态适应机制,利用1982~1999年间的NOAA/AVHRR NDVI数据和对应的气候资料,研究了近20年来青藏高原草地植被覆盖变化及其与气候因子的关系。结果表明,18年来研究区生长季NDVI显著增加(p=0.015),其增加率和增加量分别为0.41% a-1和0.001 0 a-1。生长季提前和生长季生长加速是青藏高原草地植被生长季NDVI增加的主要原因。春季为NDVI增加率和增加量最大的季节,其增加率和增加量分别为0.92% a-1和0.001 4 a-1;夏季NDVI的增加对生长季NDVI增加的贡献相对较小,其增加率和增加量分别为0.37% a-1和0.001 0 a-1。3种草地(高寒草甸、高寒草原、温性草原)春季NDVI均显著增加(p<0.01;p=0.001; p=0.002); 高寒草甸夏季NDVI显著增加(p=0.027),而高寒草原和温性草原夏季NDVI呈增加趋势,但都不显著(p=0.106; p=0.087);3种草地秋季NDVI则没有明显的变化趋势(p=0.585; p=0.461; p=0.143)。3种草地春季NDVI的增加是由春季温度上升所致。高寒草地(高寒草甸和高寒草原)夏季NDVI的增加是夏季温度和春季降水共同作用的结果。温性草原夏季NDVI变化与气候因子并没有表现出显著的相关关系。高寒草地植被生长对气候变化的响应存在滞后效应。  相似文献   

15.
Ecogeographical regionalization is the basis for spatial differentiation of biodiversity research. In view of the principle of international ecogeographical regionalization, this study has applied multivariate analysis and GIS method and based on some ecogeographical attributes limited to the distribution of plant and vegetation, including climatic factors, such as minimum temperature, mean temperature of the coldest month, mean temperature of the wannest month, annual average temperature, precipitation of the coldest month, precipitation of the wannest month, annual precipitation, CV of annual precipitation, biological factors such as vegetation types, vegetation division types, NPP, fiorisitic types, fauna types, abundance of plant species, genus and endemic genus; soil factors such as soil types, soil pH;topographical factors as longitude, latitude and altitude etc. The ecogeographical regionalization for biodiversity in China was made synthetically by using fuzzy cluster method. Four classes of division were used, viz., biodomain, subbiodomain, biome and bioregion. Five biodomains, seven subbiodomains and eighteen biomes were divided in China as follows: Ⅰ Boreal forest biodomain. Ⅰ A Eurasian boreal forest subbiodomain. Ⅰ A1 Southern Taiga mountain cold-temperate coniferous forest biome; Ⅰ A2 North Asian mixed coniferous-broad-leaved forest biome. Ⅱ Northern steppe and desert biodomain. Ⅱ B Eurasian steppe subbiodomain. Ⅱ BI Inner Asian temperate grass steppe biome; Ⅱ B2 Loess Plateau warm-temperate forest/shmb steppe biome. Ⅱ C Asia-Mrica desert subbiodomain. Ⅱ C1 Mid-Asian temperate desert biome; Ⅱ C2 Mongolian/Inner Asian temperate desert biome. Ⅲ East Asian biodomain. Ⅲ D East Asian deciduous broad-leaved forest subbiodomain. Ⅲ D1 East Asian deciduous broad-leaved forest biome, Ⅲ E East Asian evergreen broad-leaved forest subbiodomain. Ⅲ El East Asian mixed deciduous-evergreen broad-leaved forest biome; Ⅲ E2 East Asian evergreen broad-leaved forest biome; Ⅲ E3 East Asian monsoon evergreen broad-leaved forest biome; Ⅲ FA Western East Asian mountain evergreen broadleaved forest biome. Ⅳ Palaeotropical subdomain. IV F India-Malaysian tropical forest subbiodomain.Ⅳ Fl Northern tropical rain forest/seasonal rain forest biome; Ⅳ F2 Tropical island coral reef vegetation biome. Ⅴ Asian plateau biodomain. Ⅴ G Tibet Plateau subbiodomain. Ⅴ G1 Tibet alpine highcold shrub meadow biome;Ⅴ G2 Tibet alpine high-cold steppe biome; Ⅴ G3 Tibet alpine high-cold desert biome; Ⅴ G4 Tibet alpine temperate steppe biome; Ⅴ G5 Tibet alpine temperate desert biome.  相似文献   

16.
Abstract. Questions: What is the relationship between alpine vegetation patterns and climate? And how do alpine vegetation patterns respond to climate changes? Location: Tibetan Plateau, southwestern China. The total area is 2500000 km2 with an average altitude over 4000 m. Methods: The geographic distribution of vegetation types on the Tibetan Plateau was simulated based on climatology using a small set of plant functional types (PFTs) embedded in the biogeochemistry‐biography model BIOME4. The paleoclimate for the early Holocene was used to explore the possibility of simulating past vegetation patterns. Changes in vegetation patterns were simulated assuming continuous exponential increase in atmospheric CO concentration, based on a transient ocean‐atmosphere simulation including sulfate aerosol effects during the 21st century. Results: Forest, shrub steppe, alpine steppe and alpine meadow extended while no desert vegetation developed under the warmer and humid climate of the early Holocene. In the future climate scenario, the simulated tree line is farther north in most sectors than at present. There are also major northward shifts of alpine meadows and a reduction in shrub‐dominated montane steppe. The boundary between montane desert and alpine desert will be farther to the south than today. The area of alpine desert would decrease, that of montane desert would increase. Conclusions: The outline of changes in vegetation distribution was captured with the simulation. Increased CO2 concentration would potentially lead to big changes in alpine ecosystems.  相似文献   

17.
中昆仑山北坡及内部山原的植被类型   总被引:3,自引:0,他引:3       下载免费PDF全文
 中昆仑山西始乌鲁乌斯河,东迄安迪河,东西迤逦600余公里,平均海拔高度6000m。该区有野生种子植物52科,211属,398种。植物区系以种类成份单纯、地理成份复杂为特征。北坡中山带和高山带下部年降水量300—500mm,草原带发育完整,尤以中段的策勒山地草原发育最好。草原带以上高寒荒漠不存在,高寒草甸则有一定发育。中昆仑山北坡植被类型的垂直带谱是:1)山地荒漠,自山麓线多在2200—2500m,个别在3000m;2)山地荒漠草原在3000—3200m;3)山地真草原在3200—3600m;4)高寒草原在3600—3800m(阳坡上升到4200m以上);5)高寒草甸在3800—4200m;6)高山垫状植被仅见于东段山地和高寒草甸复合分布;7)高山流石坡稀疏植被在4200—5000m。中昆仑山内部山原极端寒冷干旱,多为砾漠所占据,高寒荒漠和高寒荒漠草原呈片状星散分布。  相似文献   

18.
基于全球库存建模和制图研究(GIMMS)第三代归一化植被指数(NDVI3g)产品和气象数据,利用一元线性回归模型、偏相关分析和显著性T检验,分析了1982—2015年青藏高原高寒草甸和高寒草原春、夏、秋季NDVI时空演变的差异特征及其与气候因子的关系。研究表明:(1)高寒草甸春、夏、秋季NDVI整体均无明显变化趋势,高寒草原春季和夏季NDVI均显著增加,变化速率均为0.0002/a(P<0.05),而秋季NDVI变化趋势不明显。(2)空间上,高寒草甸春季NDVI显著增加面积占比31.95%,集中分布在祁连山区和三江源区,夏季NDVI显著增加的面积占比32.12%,主要分布在祁连山区、三江源地区和一江两河流域;秋季NDVI显著增加的比例为24.59%,集中分布于祁连山区和一江两河流域。高寒草原春、夏、秋季NDVI显著增加的区域均集中分布于西藏自治区北部和柴达木盆地南缘地区,分别占比44.20%、43.09%和37.99%。(3)高寒草甸春季和秋季NDVI均与气温显著正相关,偏相关系数达0.41(P<0.05)和0.23(P<0.05),夏季NDVI与气温、降水量和太阳辐...  相似文献   

19.
以西藏高原高寒草原生态系统的4个自然地带(高山草原、高山灌丛草甸、山地半荒漠与荒漠以及山地灌丛草原)的19个草地型植被为研究对象,采用野外调查与室内分析相结合的方法,对高寒草原生态系统植被C/N值的分布特征及其影响因素进行了研究。结果表明:西藏高原高寒草原植被C/N值总体上呈现出东西部低而中间高的态势以及斑块状交错分布的格局。不同自然地带间和不同草地型间植被地上部分和根系的C/N值有明显差异,且地上部分的C/N值均大于根系。19个草地型植被地上部分的平均C/N值为34.17,变异系数为35.87%;根系的平均C/N值为29.58,变异系数为40.02%。4个自然地带植被地上部分的平均C/N值为31.98,变异系数为13.82%;根系的平均C/N值为31.86,变异系数为16.92%。回归分析结果显示:植被地上部分C/N值与地上部生物量以及土壤全N和全K含量呈显著正相关、与植被高度呈显著负相关;根系C/N值与海拔和20~30em土壤容重呈显著正相关、与年均降水量和年均蒸发量呈显著负相关,这些因子均为影响西藏高原高寒草原植被C/N值的关键环境因子。总体上看,地理因子、气候因子和土壤物理因子对西藏高原高寒草原生态系统植被C/N值的影响不显著,而植被因子和土壤化学因子则对其有显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号