首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   7篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2009年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
千粒重是大麦产量的重要构成因素之一。青藏高原强辐射、低温、干旱的生态环境孕育了现代农业所急需的大麦种质资源,但是迄今为止尚未见到有关青藏高原栽培大麦WTS与环境因子关系的系统性研究报道。为了揭示青藏高原栽培大麦千粒重的空间分布规律,探明不同环境因子对青藏高原栽培大麦千粒重(WTS)积累的影响程度,利用83个样点的地理、气候、土壤因子数据,研究了青藏高原栽培大麦WTS的分布特征。结果表明:(1)在地理水平方向上,青藏高原栽培大麦WTS总体呈现出斑块状交错分布的格局,形成了以西藏曲水、堆龙德庆、白朗、乃东、日喀则、扎囊、贡嘎、加查、达孜、谢通门、拉孜、定日为中心的青藏高原西南部和青海海晏、门源、刚察为中心的青藏高原东北部等2个栽培大麦WTS高值区;(2)在地理垂直方向上,栽培大麦WTS的变化呈现出"N"型分布格局,即在海拔3600.0—3900.0m和4500.0m以上形成2个WTS高值区,这2个海拔区间栽培大麦WTS分别为(49.6815±10.0764)g和(47.9500±0.1732)g;(3)影响栽培大麦WTS的环境因子从大到小的顺序是抽穗-成熟期降水量土壤速效钾含量分蘖-拔节期日照时数抽穗-成熟其平均气温抽穗-成熟期日照时数拔节-抽穗平均气温日较差地理经度。  相似文献   
2.
对贡嘎南山-拉轨岗日山南坡高寒草原生态系统表层(0~20cm)土壤活性有机碳分布特征研究表明:表层(0~20 cm)土壤活性有机碳平均为(2.4986±0.7864) g/kg,占表层土壤有机碳的(12.7926±21.00)%.在海拔4424~4804m范围内,随着海拔升高,表层(0~20cm)土壤活性有机碳含量表现出先减少后增加的分布特征,有机碳活度也表现出先减少后增加的分布特征.影响表层土壤活性有机碳含量最关键的环境因子是地上生物量、0~10cm地下生物量、30~40cm地下生物量、20~30cm土壤含水量、0~20cm土壤容重、20~40cm土壤容重和土壤全N量;影响表层土壤有机碳活度最关键的环境因子则是植被盖度、20~30cm地下生物量、0~10cm土壤含水量、10~20cm土壤含水量、20~30cm土壤含水量、土壤有机质、土壤速效K和土壤全N量.  相似文献   
3.
为了揭示不同环境因子对青藏高原栽培大麦籽粒淀粉含量(GSC)积累的影响程度,完善大麦GSC空间分异与环境因子的关系,明确青藏高原不同地区大麦品种GSC的环境效应,利用83个样点的地理、气候、土壤、农艺因子数据,研究了青藏高原栽培大麦GSC的分布特征,结果表明:(1)在地理水平方向上,青藏高原栽培大麦GSC的水平分布总体呈现出斑块状交错分布和南高北低的格局,并形成了以西藏拉孜、隆子、堆龙德庆、曲水、尼木、定日、萨迦、达孜、扎囊、日喀则、墨竹工卡、贡嘎、琼杰为中心的青藏高原中南部和以青海共和、贵德、海晏、同德为中心的青藏高原东北部等2个栽培大麦GSC高值区;(2)在地理垂直方向上,栽培大麦GSC的变化呈现出"S"型分布格局,即在海拔3300.0—3600.0 m以上,随着海拔的升高,栽培大麦GSC逐渐增加,在海拔4200.0 m与4500.0 m之间达到最高值,此后随着海拔的升高略有下降;(3)影响栽培大麦GSC的因子从大到小的顺序是穗密度﹥6月平均气温日较差芒长﹥9月平均气温1月平均气温年日照时数﹥≥0℃积温5月平均气温﹥8月平均气温日较差8月平均气温6月平均气温≥10℃积温6月平均月降水量5月平均月降水量7月平均相对湿度8月平均相对湿度7月平均气温。这一研究结果显示,对栽培大麦GSC影响最大的是基因型,其次是气候因素,土壤因素对GSC的影响不明显。影响栽培大麦GSC的农艺因子主要是穗密度和芒长,气候因子主要是拔节抽穗期的气温日较差和籽粒灌浆成熟期的平均气温,日照和降水的影响相对较小。  相似文献   
4.
拉萨河谷杨树人工林细根的生产力及其周转   总被引:6,自引:0,他引:6  
通过土钻取样和分解袋法对拉萨河谷杨树人工林细根的生长和周转进行了测定.结果表明,在该地区杨树人工林生态系统中,约80%的细根集中分布在0~30cm土壤表层中;接近树木一侧的活(死)细根生物量均高于外侧,但二者未达到显著的差异;在生长季期间,活细根生物量平均为2.576 t · hm-2,死细根生物量平均为1.566 t · hm-2,生长高峰出现在生长季初期.经估算,拉萨河谷杨树人工林细根年生长量为3.030 t · hm-2,年周转率为1.18次;但受高原低温的影响,细根分解缓慢,分解系数k平均为0.0007~0.0008.细根的这种生长特征是杨树对高原地区短暂生长季节和雨热同季气候条件的一种适应性表现.  相似文献   
5.
青藏高原高寒草原生态系统土壤碳氮比的分布特征   总被引:9,自引:0,他引:9  
利用67个样点数据,研究了青藏高原高寒草原生态系统土壤碳氮比的分布特征。结果表明:(1)在水平方向上,土壤碳氮比呈现出西北高、东南低的总体态势和斑块状交错分布的格局,碳氮比的高值区主要集中在藏北高原腹地和喜马拉雅山北麓湖盆区,不同草地型和不同自然地带土壤碳氮比差异显著;(2)土壤剖面自上而下,不同草地型碳氮比可分为低-高-低型、由高到低型、由低到高型、高-低-高-低型和高-低-高型等5个类型。表土层(0—20 cm)与底土层(30—40 cm)土壤碳氮比差异显著;(3)土壤碳氮比与与最冷月均气温、年均蒸发量、年均相对湿度和土壤全氮含量呈极显著正相关关系,而与年均日照时数、年均气温、速效钾含量呈极显著负相关关系,这些环境因素对土壤碳氮比影响从大到小的顺序是年均相对湿度年均日照时数最冷月均气温年均气温年均蒸发量土壤全氮含量土壤速效钾含量。  相似文献   
6.
采用野外调查和室内分析相结合的方法,研究了青藏高原高寒草原生态系统土壤N/P的分布特征.结果表明: 青藏高原高寒草原生态系统土壤N/P总体上呈现出西高东低、斑块状交错分布的格局,N/P的高值区主要集中在藏北高原腹地和喜马拉雅北麓湖盆区,不同草地类型和不同自然地带土壤N/P差异显著.不同草地类型土壤N/P自上而下可分为低 高 低 高型、低-高-低型、低-高型、高-低-高-低型和高-低-高型等5个类型,表土层与底土层N/P差异显著.土壤N/P与0~20 cm土壤容重、20~30 cm土壤含水量、速效钾、全氮含量显著正相关,与20~30 cm土壤容重、土壤速效磷和全磷含量显著负相关.  相似文献   
7.
采用83个样点数据,研究了青藏高原栽培大麦β-葡聚糖含量的分布特征.结果表明: 在地理水平方向上,青藏高原栽培大麦β-葡聚糖含量总体呈现出斑块状交错分布的格局,并形成了以青海贵德、同德,甘肃夏河、合作为中心的青藏高原东北部和以西藏江孜、白朗、谢通门、日喀则、拉孜、康马、贡嘎、曲水为中心的青藏高原西南部等两个栽培大麦β-葡聚糖含量高值区;在地理垂直方向上,栽培大麦β-葡聚糖含量呈现出双峰曲线分布格局,在海拔2700~3000 m和3600~3900 m形成2个高峰区,这2个高峰区栽培大麦β-葡聚糖含量的平均值分别为(5.7±1.7)%和(4.6±1.1)%;对栽培大麦β-葡聚糖含量影响重要值指数在40.0%以上的因子依次是籽粒颜色>穗密度>9月平均相对湿度>土壤速效氮含量>土壤速效钾含量>6月平均气温日较差>≥10 ℃积温>年均气温>土壤速效磷含量>9月平均气温日较差.  相似文献   
8.
根据青藏高原高寒草原生态系统中以降水量为主要驱动力的东西样带和以气温为主要驱动力的南北样带内植被土壤的实测数据,分析了这一区域植被碳密度的分布特征及其与气候因子之间的关系.结果表明,在南北样带内(北纬28°46′~31°40′),植被碳密度首先随纬度的增加而增加,当纬度达到约北纬30°16′处,植被碳密度达到最大值0.873 1 kg·m-2,之后,则随纬度的增加而减少,植被碳密度总体上呈现出南北低、中间高的分布特征;在东西样带内(东经80°02′~91°50′),植被碳密度随经度的增加而增加,呈现出东高西低的分布特征.在南北样带内植被碳密度与年均降水量和年均气温之间的偏相关系数均达到极显著水平,而在东西样带内植被碳密度与年均降水量和年均气温之间的偏相关系数也均达到显著水平;在南北样带内植被碳密度先随年均气温和年均降水量的增加而增加,当年均气温达到约-1.5 ℃、年均降水量达到约497.0 mm时,植被碳密度达到最大值1.329 6 kg·m-2,之后,随年均气温和年均降水量的增加而减少;在东西样带内植被碳密度也先随年均气温和年均降水量的增加而增加,当年均气温达到约0.7 ℃、年均降水量达到约409.0 mm时,植被碳密度达到最大值1.208 3 kg·m-2,之后,随年均气温和年均降水量的增加而减少.研究结果显示,青藏高原高寒草原生态系统南北样带和东西样带内的植被碳密度分布均是年均气温和年均降水量综合作用的结果,且年均降水量的作用大于年均气温.  相似文献   
9.
以西藏高原高寒草原生态系统的4个自然地带(高山草原、高山灌丛草甸、山地半荒漠与荒漠以及山地灌丛草原)的19个草地型植被为研究对象,采用野外调查与室内分析相结合的方法,对高寒草原生态系统植被C/N值的分布特征及其影响因素进行了研究。结果表明:西藏高原高寒草原植被C/N值总体上呈现出东西部低而中间高的态势以及斑块状交错分布的格局。不同自然地带间和不同草地型间植被地上部分和根系的C/N值有明显差异,且地上部分的C/N值均大于根系。19个草地型植被地上部分的平均C/N值为34.17,变异系数为35.87%;根系的平均C/N值为29.58,变异系数为40.02%。4个自然地带植被地上部分的平均C/N值为31.98,变异系数为13.82%;根系的平均C/N值为31.86,变异系数为16.92%。回归分析结果显示:植被地上部分C/N值与地上部生物量以及土壤全N和全K含量呈显著正相关、与植被高度呈显著负相关;根系C/N值与海拔和20~30em土壤容重呈显著正相关、与年均降水量和年均蒸发量呈显著负相关,这些因子均为影响西藏高原高寒草原植被C/N值的关键环境因子。总体上看,地理因子、气候因子和土壤物理因子对西藏高原高寒草原生态系统植被C/N值的影响不显著,而植被因子和土壤化学因子则对其有显著影响。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号