首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   7篇
  国内免费   1篇
  2010年   1篇
  2006年   1篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
长江流域植被净第一性生产力及其时空格局研究   总被引:22,自引:0,他引:22       下载免费PDF全文
 基于生态过程模型——CASA模型,利用1982~1999年18年来8 km×8 km分辨率的遥感数据和匹配的温度、降水、太阳辐射资料以及植被和土壤信息,对长江流域的植被NPP及其时空分布格局进行了分析。主要结论如下:1) 18年来,长江流域年均NPP总量为0.46Pg C·a-1,占全国总量的27.22  相似文献   
2.
我国不同季节陆地植被NPP对气候变化的响应   总被引:20,自引:1,他引:19  
阐明不同季节陆地植被净第一性生产力(NPP)对全球变化的响应将有助于理解陆地生态系统和气候系统之间的相互作用以及NPP变化机制。本文使用1982-1999年间的AVHRR/NDVI、气温、降水以及太阳辐射等资料,结合植被分布图和土壤质地图,利用生态过程模型,研究不同季节我国陆地植被NPP的年际变化及其地理分异。结果表明,在1982-1999年的18年间,4个季节的NPP都呈显著增加趋势。其中,春季是NPP增加速率最快的季节,夏季是NPP增加量最大的季节,不同植被类型对全球变化的响应有很大差异。常绿阔叶林,常绿针叶林和落叶针叶林NPP的增加主要由生长季节的提前所致。而落叶阔叶林、针阔混交林、矮林灌丛,温带草原及草甸,稀树草原、高寒植被,荒漠以及人工植被NPP的增加主要来自生长季生长加速的贡献。从区域分布看,在四季中春季NPP增加量最大的地区主要集中在东部季风区域;夏季NPP增量最大的地区包括西北干旱区域和青藏高原的大部分地区,小兴安岭-长白山区,三江平原,松辽平原,四川盆地,雷州半岛,长江中下游部分地区以及江南山地东部;而秋季植被NPP增加量最大的地区主要有云南高原-西藏东部和呼伦湖的周围等地区。不同植被和地理区域NPP的这些响应方式与区域气候特征及其变化趋势有关。  相似文献   
3.
东北地区阔叶红松林的群落结构及其物种多样性比较   总被引:20,自引:1,他引:19  
利用在长白山、小兴安岭、张广才岭设置的 9个样方的调查资料 ,对我国东北地区阔叶红松林的群落结构及其物种多样性进行了对比分析。结果表明 ,在 9个样方共记录到物种 137种 ,隶属于 5 3科 98属。利用TWINSPAN将 9个样方分为 3组 4个类型 ;同时 ,TWINSPAN还将 2 7个乔木种划分为 7个群落类型。不同样方的群落结构指标相差较大 ,这与群落所处的环境、地理位置以及年龄有关。平均胸径与立木密度之间呈幂函数关系 ,后者随前者增加而递减。群落结构特征之间存在显著的关系 ,但与物种丰富度的关系不显著。对于多样性(H′)和均匀度 (E)来说 ,一般有草本层 >灌木层 >乔木层的趋势 ;而在各自的取样面积内 ,物种丰富度 (S)差异不大。对所有调查区域内的植物而言 ,长白山的阔叶红松林在三地中拥有最高的丰富度 ,并且这主要来源于草本层和灌木层的贡献 ,乔木层的丰富度在三地并没有明显差异。  相似文献   
4.
CO2失汇与北半球中高纬度陆地生态系统的碳汇   总被引:47,自引:0,他引:47       下载免费PDF全文
 化石燃料消耗及热带林破坏导致约7.0PgC·a-1(1Pg=109t)的CO2向大气排放,其中3.0~3.4PgC·a-1的CO2被用于大气CO2浓度的升高,约2.0PgC·a-1的CO2被海洋吸收,而陆地生物圈被认为是CO2净吸收与净排放基本达到平衡。因此,在人工源CO2中,尚有1.6~2.0PgC·a-1的CO2去向不明。这就是著名的CO2失汇之谜。大气成分监测、CO2通量测定以及模型模拟等方面的研究都表明,北半球陆地生态系统是一个重要的碳汇,但其值存在很大的不确定性,且具有较大的时空变化。全球温暖化、CO2施肥效应,氮和磷沉降的增加以及人工植被的扩大是形成碳汇的主要因素。为减少碳汇估计值的不确定性,除加强长期定位监测、改良现有估测模型外,重视研究土壤圈在碳循环中的作用至关重要。  相似文献   
5.
CO_2失汇与北半球中高纬度陆地生态系统的碳汇   总被引:13,自引:0,他引:13       下载免费PDF全文
化石燃料消耗及热带林破坏导致约 7.0 Pg C· a- 1 (1Pg=10 9t)的 CO2 向大气排放 ,其中 3.0~ 3.4Pg C·a- 1 的 CO2 被用于大气 CO2 浓度的升高 ,约 2 .0 Pg C· a- 1 的 CO2 被海洋吸收 ,而陆地生物圈被认为是 CO2 净吸收与净排放基本达到平衡。因此 ,在人工源 CO2 中 ,尚有 1.6~ 2 .0 Pg C· a- 1的 CO2 去向不明。这就是著名的 CO2 失汇之谜。大气成分监测、CO2 通量测定以及模型模拟等方面的研究都表明 ,北半球陆地生态系统是一个重要的碳汇 ,但其值存在很大的不确定性 ,且具有较大的时空变化。全球温暖化、CO2 施肥效应 ,氮和磷沉降的增加以及人工植被的扩大是形成碳汇的主要因素。为减少碳汇估计值的不确定性 ,除加强长期定位监测、改良现有估测模型外 ,重视研究土壤圈在碳循环中的作用至关重要  相似文献   
6.
近20年来中国植被活动在增强   总被引:76,自引:0,他引:76  
为阐明近20年来中国植被覆盖变化的整体状况, 利用归一化植被指数(NDVI)作为植被活动的指标, 使用第3代NOAA-AVHRR/NDVI时间序列数据, 研究了1982~1999年间中国地区NDVI的变化. 为消除地表非植被因素的影响, 参考国际惯例, 定义年NDVI≥0.1的地区为有植被覆盖地区(简称植被地区), NDVI < 0.1的地区为植被稀少地区. 结果表明, 18年来, 我国大多数地区的NDVI都呈现不同程度的增加趋势, 表明我国的植被活动在增强. 与80年代初相比, 90年代末植被地区的面积增加3.5%, 植被稀少地区的面积下降了18.1%. 全国平均年NDVI增加了7.4%. 生长季节的延长和生长加速是我国NDVI增加的主要原因, 而温度上升和夏季降水量的增加以及农业活动的加强可能是其主要的驱动因子. 我国NDVI变化趋势显示了较大的空间异质性: 东部沿海地区呈下降趋势或变化不明显; 农业产区和西部地区增加显著. 这种空间异质性是由于城市化过程、农业生产活动、区域气候特征以及植被对气候变化的区域响应等综合因素作用的结果.  相似文献   
7.
中国草地植被生物量及其空间分布格局   总被引:113,自引:0,他引:113       下载免费PDF全文
 草地生态系统是陆地生态系统分布最广的生态系统类型之一,它在全球变化中的作用越来越受到重视。利用中国草地资源清查资料,并结合同期的遥感影像,建立了基于最新修正的归一化植被指数(NDVI)的我国草地植被生物量估测模型,并利用该模型研究了我国草地植被生物量及其空间分布特征。结果表明:草地植被地上生物量与当年最大NDVI值具有很好的相关关系,两者可以用幂函数很好地拟合(R2=0.71, p<0.001)。我国草地植被总地上生物量为146.16 TgC(1 Tg=1012 g),主要集中在北方干旱、半干旱地区和青藏高原;总地下生物量为898.60 TgC,是地上生物量的6.15倍;而总生物量是1 044.76 TgC,占世界草地植被的2.1%~3.7%,其平均密度约等于315.24 gC·m-2,低于世界平均水平。我国草地植被单位面积地上生物量水平分布趋势为:东南地区高,西北地区低,与水热条件的分布趋势一致;从垂直分布看,在海拔1 350 m和3 750 m处分别出现了波谷和波峰,与我国特有的三级阶梯地势有着密切的关系。此外,我国草地植被生物量为森林的1/4左右,显著大于世界平均水平,说明我国草地在碳平衡中的贡献相对较大。  相似文献   
8.
洪湖湖区土地利用/土地覆盖时空格局研究   总被引:17,自引:6,他引:11  
利用1987,1993和1998年的遥感影像资料,研究了江汉平原洪湖湖区土地利用/土地覆盖的时空变化,土地覆盖类型分为水体,湖滩植被,洪泛地,农田,裸地和居民地6类,运用GIS(Arc/Info)软件,将不同时期的土地利用/土地覆盖的格局进行了清晰的空间表达;通过叠加3个不同时段的影像分类图,计算出各种土地利用/土地覆盖类型转变成其他类型的比例,在1987-1993年期间,水体和洪泛地的面积分别增加了15.54%和9.62%,而1993-1998年期间这两种类型的变化较小,分别为0.58%和3.19%,农田面积从1987年的577.62km^2减少到1998年的188.58km^2,减少约2/3,在研究期间,裸地面积没有明显变化,湖潍植被的面积在1987-1993年期间降低18.60%,而在1993-1998年期间增加8.47%,土地利用/土地覆盖状况的变化与湖区退田还湖及降雨状况的年际变化有关。  相似文献   
9.
中国森林具有林龄小、平均碳密度低、人工林面积大的特点, 因而具有很高的固碳潜力. 本文根据1994~1998和1999~2003年两期森林资源清查资料中各主要森林类型的林龄组、以及各林龄组的面积和蓄积数据, 分别为36种森林类型建立生物量密度与林龄之间的关系. 在此基础上, 结合中国林业发展规划, 预测到2050年中国森林(不包括经济林和竹林)的生物量碳汇潜力. 结果显示, 在自然生长状况下, 到2050年, 中国现有森林生物量碳库将由1999~2003年的5.86 Pg C增加到10.23 Pg C, 碳汇量为4.37 Pg C; 新造森林将增加碳汇2.86 Pg C; 2000~2050年中国现有森林与新造森林的生物量碳汇合计为7.23 Pg C, 平均年碳汇量为0.14 Pg C/a, 表明中国森林具有较大的碳汇潜力.  相似文献   
10.
青藏高原草地植被覆盖变化及其与气候因子的关系   总被引:74,自引:0,他引:74       下载免费PDF全文
 为揭示气候变化对青藏高原草地生态系统的影响及其生态适应机制,利用1982~1999年间的NOAA/AVHRR  NDVI 数据和对应的气候资料,研究了近20年来青藏高原草地植被 覆盖 变化及其与气候因子的关系。结果表明,18年来研究区生长季NDVI显著增加(p=0.015) ,其增加率和增加量分别为0.41% a-1和0.001 0 a-1。生长季提前和生长季生长加速是青藏高 原草地植被生长季NDVI增加的主要原因。春季为NDVI增加率和增加量最大的季节, 其增加率 和增加量分别为0.92% a-1和0.001 4 a-1;夏季NDVI的增加对生长季NDVI增加的贡献相对较小,其增加率和增加量分别为0.37% a-1和0.001 0 a-1。3种草地(高寒草甸、高寒草原、温性草原)春季NDVI均显著增加(p<0.01; p=0.001; p=0.002); 高寒草甸夏季NDVI显著增 加(p=0.027),而高寒草原和温性草原夏季NDVI呈增加趋势,但都不显著(p=0. 106; p=0 .087);3种草地秋季NDVI则没有明显的变化趋势(p=0.585; p=0.461; p=0 .143)。3种草地春季NDVI的增加是由春季温度上升所致。高寒草地(高寒草甸和高寒草原)夏季 NDVI的增加是夏季温度和春季降水共同作用的结果。温性草原夏季NDVI变化与气候因子并没有表现出显著的相关关系。高寒草地植被生长对气候变化的响应存在滞后效应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号