首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
藏北高原植被物候时空动态变化的遥感监测研究   总被引:9,自引:0,他引:9       下载免费PDF全文
利用遥感数据提取的植被物候格局及时空变化特征能很好地反映区域尺度上植被对全球变化的响应。目前关于青藏高原地区植被物候的少量报道基本上是基于物候站点的观测记录展开分析的。该文基于非对称高斯拟合算法重建了藏北高原2001-2010年的MODIS EVI (增强型植被指数)时间序列影像, 然后利用动态阈值法提取整个藏北高原2001-2010年植被覆盖的重要物候信息, 包括植被返青期、枯黄期与生长季长度, 分析了植被物候10年间平均状况的空间分异特征以及年际变化情况, 并结合站点观测记录分析了气温和降水对植被物候变化的影响, 结果表明: (1)藏北高原植被返青期在空间上表现出从东南到西北逐渐推迟的水平地带性与东南高山峡谷区的垂直地带性相结合的特征, 近60%区域的植被返青期提前, 特别是高山地区; (2)植被枯黄期的年际变化不太明显, 大部分地区都表现为自然的年际波动; (3)生长季长度的时空变化特征由植被返青期和枯黄期二者决定, 但主要受返青期提前影响, 大部分地区生长季长度延长; (4)研究区内不同气候区划植被物候的年际变化以那曲高山谷地亚寒带半湿润区和青南高原亚寒带半干旱区的植被返青期提前和生长季延长程度最为明显; (5)基于气象台站数据分析气候变化对物候的影响发现, 返青期提前及生长季延长主要受气温升高的影响, 与降水的关系尚不明确。  相似文献   

2.
藏北高原典型植被样区物候变化及其对气候变化的响应   总被引:7,自引:0,他引:7  
植被物候作为陆地生态系统对气候变化的响应和反馈的重要指示,已成为区域或全球生态环境领域研究的热点。基于非对称高斯拟合方法重建了2001—2010年MODIS EVI时间序列影像,利用动态阈值法提取藏北高原植被覆盖2001—2010年每年关键物候参数。选取研究区内东部高寒灌丛草甸、中部高寒草甸及西部高寒草原和高寒荒漠4种典型植被类型,并结合附近的4个气象台站气候资料,分析典型植被物候在近10a对关键气候因子的响应特征。研究结果表明:(1)4种不同典型植被的物候特征(EVImax降低、返青期延后和生长季长度缩短)均表现出高寒灌丛草甸→高寒草甸→高寒草原→高寒荒漠草原的过渡;(2)藏北高原近10a的年平均气温及春、夏、冬三个季度的平均气温均呈显著升高的趋势,升温幅度在0.8—3.9℃/10a,降水减少趋势不显著,在这种水热条件下典型植被均表现出返青提前(7.2—15.5d/10a)、生长季延长(8.4—19.2d/10a)的趋势,而枯黄出现时间为年际间自然波动;(3)高寒灌丛草甸EVImax主要受春季降水量和气温影响,且降水的影响程度大于气温;对高寒草甸植被而言,春、夏季的气温和降水均有较大的影响;而高寒草原和高寒荒漠草原主要受夏季平均气温和降水量影响;(4)高寒灌丛草甸的返青时间主要受前一年秋季降水量的影响,相关系数达-0.579;而高寒草甸、高寒草原和高寒荒漠草原主要受春季平均气温影响,高寒荒漠草原的特征最为明显(r=-0.559)。  相似文献   

3.
青海湖流域草地植被动态变化趋势下的物候时空特征   总被引:2,自引:0,他引:2  
植被物候不仅直接受气候变化的影响,还反作用于气候变化。因此,明确植被物候变化的驱动机制对于进一步研究气候变化与物候的相互作用具有重要的意义。选取位于青藏高原东北部的青海湖流域,利用MODIS 16d增强植被指数(EVI)合成数据,来分析草地物候时空格局特征以及不同EVImax变化趋势下草地物候期(返青期、枯黄期及生长季)的变化趋势。研究得到以下结果:(1)在气候变化和人类活动等因素的共同作用下,青海湖流域的EVImax变化呈现多元化趋势,EVImax增加、不变、降低趋势并存;(2)1990—2012年期间,流域内温度上升、降水量增加趋势显著,温度上升速率为0.42—0.83℃/10a,降水量增加速率为43.20—44.68 mm/10a。刚察、天峻气象站草地返青期在2001—2012年期间呈现延迟趋势,枯黄期变化趋势不显著,生长季呈现缩短趋势;(3)流域内草地返青从4月下旬持续到6月上旬,枯黄期从8月中旬持续到10月上旬,青海湖东岸、南岸、布哈河入湖口区域以及流域西部山坡和平坦的谷底地区牧草最早进入返青期,返青空间格局呈现由湖岸向四周高海拔地区延伸趋势,草地枯黄空间格局与返青期相反;(4)不同EVImax变化趋势下,草地返青期、枯黄期、生长季变化趋势表现出差异。草地EVImax降低趋势下,牧草返青期呈现提前趋势,枯黄期延迟,生长季延长;EVImax增加趋势下,牧草返青期延迟,枯黄期变化不明显,生长季缩短;EVImax不变区、农田的返青与枯黄期变化趋势并不明显,但是农田生长季缩短趋势较明显。  相似文献   

4.
高寒草甸植物物候对温度变化的响应   总被引:4,自引:0,他引:4  
李晓婷  郭伟  倪向南  卫晓依 《生态学报》2019,39(18):6670-6680
植物物候是植物为适应其生长环境而呈现的规律性变化,是气候变化的指示器。为了解高寒植物物候对温度变化的响应,利用1997—2010年青海湖海北高寒草原生态监测站群落优势种矮嵩草物候观测资料和同时段的气象资料,应用偏最小二乘(PLS)回归定量分析了植物物候期变化特征、趋势及其与气温间的相互关系。结果表明:①1997—2010年青海湖地区年均温度总体上升,倾向率为0.5℃/10a,其中年均最高温度和最低温度呈现出非对称型变化,最低温度显著升高且高于年均温升幅,倾向率为0.7℃/10a(P0.05),而年均最高温度无明显变化。②1997—2010年间,矮嵩草平均返青期和枯黄期分别为4月18日和10月2日,矮嵩草返青期推迟,枯黄期提前,生长季长度缩短。③影响矮嵩草返青的关键时期为每年的1月和3—4月,1月温度升高影响植物休眠进程进而延迟返青,而3—4月温度升高有利于热量积累使返青提前;影响矮嵩草枯黄的关键时期为7月上中旬和8月,期间温度升高使枯黄期提前。④根据PLS分析和相关分析,最低温度在各关键时期内显著影响植物物候,而最高温度仅在8月对枯黄期影响通过显著性检验,因此最低温度是影响高寒草地矮嵩草物候期的关键因子。  相似文献   

5.
植被物候是响应外界环境变化的重要感应器,本文基于MOD13Q1 EVI数据,采用动态阈值法提取滇中城市群2001—2020年的植被物候参数,即生长季开始期、生长季结束期和生长季长度,揭示植被物候时空变化特征及城乡差异。结果表明:2001—2020年,滇中城市群植被总体呈现生长季开始期推迟、生长季结束期推迟(每年推迟0.66 d)和生长季长度延长的现象;相较于郊区和乡村地区,城区植被近20年的生长季开始期提前(每年1.05 d),生长季结束期推迟(每年0.91 d),生长季长度延长(每年1.79 d)。在城区-郊区-乡村梯度上,植被物候表现出显著的差异性,城区植被平均每年生长季开始期最早,结束期最早,且生长季长度最长,尤其在城区及向外0~2 km范围内变化最明显。随人口密度、人均GDP和建成区面积占比的增大,城区植被物候生长季开始期显著提前,生长季结束期显著推迟,生长季长度显著延长。植被各物候期及其持续时间在城区-郊区-乡村梯度上对环境变化的敏感度不同,研究区人口密度和建成区面积占比对滇中城市群植被生长季结束期的推迟有重要影响。  相似文献   

6.
 该研究基于Savitzky_Golay滤波算法平滑了1982~1999年NOAA/AVHRR NDVI 时间序列影像,然后利用曲线拟合了锡林郭勒典型草原1982~1999年的每年物候期(返青期、黄枯期)及18年的平均物候期和生长季长度,并对1982~1999年的物候期进行了线性拟合,从而分析了物候期的变化趋势。结果表明:1)1982、1986、1992年的返青期处于正常水平,1985、1988、1989、1991年大部分地区的牧草返青期比正常年份有所提前。1984、1990、1993 年的黄枯期处于正常水平,大部分年份的黄枯期主要处于9月下旬至10月上旬(290~310 d)。2)在整个典型草原,返青期有较大的变异性,而黄枯期变化表现出了锡林郭勒典型草原的西南部较早、中部及东北部较晚的格局,生长季长度的变化格局为西南地区最短,中部地区最长。3)从1982~1999年,不同的地区表现出物候期及生长季长度提前或延迟的变化趋势,返青期大多数地区延迟时间集中在10~20 d,提前日期主要集中在10 d之内。锡林郭勒盟西南地区的黄枯期提前趋势最大。大部分地区的生长季长度变化呈缩短趋势,缩短日期小于 10 d,少部分地区的生长季延长,延长日期主要集中在0~10 d。4)对锡林浩特的物候期研究表明,牧草返青期提前日期小于10 d,黄枯期延迟大约14±5 d,生长季长度延迟大约1 5±5 d。最后利用野外观测数据对锡林浩特牧草返青期的拟合精度作出了评价。  相似文献   

7.
数据源、时间范围、空间尺度等的差异导致许多物候变化对陆地生态系统碳收支影响的研究缺少可比性。该文基于4级碳通量填充数据, 采用相对阈值方法提取了两个北美典型温带阔叶林站Harvard Forest (HF)和University of Michigan Biological Station (UMBS)共20年的物候参数(返青期、枯黄期和生长季长度), 并研究了物候变化对生态系统生产力的影响。结果表明: 1)生长季长度的延长对年累积总初级生产力(GPP)有显著贡献, 但由于呼吸作用(RE)的干扰, 生长季长度变化对年净生态系统生产力(NEP)的影响并不显著; 2)返青期的提前对上半年生态系统总初级生产力的贡献最为显著, 二者的相关系数分别为0.76 (HF)和0.93 (UMBS); 3)枯黄期的延迟对生产力的影响并不显著; 4)随着春季返青期的提前或秋季枯黄期的延迟, 上、下半年GPPRE的累积量虽均有增加趋势, 但由于各自增加的幅度不确定, 导致年NEP与二者的响应关系复杂。  相似文献   

8.
祁连山不同植被类型的物候变化及其对气候的响应   总被引:2,自引:0,他引:2  
贾文雄  赵珍  俎佳星  陈京华  王洁  丁丹 《生态学报》2016,36(23):7826-7840
基于1982—2006年GIMMS NDVI和2000—2014年MODIS NDVI遥感数据,利用double logistic拟合方法提取了1982—2014年祁连山区不同植被的生长季始期、生长季末期和生长季长度3个重要的物候参数,分析了不同植被物候期的时间变化趋势、空间分异特征及对气候因子的响应。结果表明:(1)祁连山区不同植被的生长季始期和生长季末期随年际变化表现出波动提前或推迟,其中沼泽植被的变化波动最大;草甸植被、灌丛植被、阔叶林植被和栽培植被生长季长度出现延长趋势;(2)祁连山区植被生长季始期集中在5月初,其中阔叶林植被生长季开始最早,荒漠植被生长季开始最晚,植被生长季末期集中在9月,栽培植被生长季结束较早,荒漠植被、沼泽植被生长季结束较晚,植被生长季长度集中在110—140 d,其中阔叶林植被、针叶林植被生长季长度较长,而荒漠植被、高山植被生长季长度较短;(3)祁连山植被物候期变化趋势的空间分布表明植被生长季始期、生长季末期主要表现为提前不明显和推迟不明显,生长季长度主要表现为缩短不明显和延长不明显;(4)物候要素与气候要素相关性表明前期温度的积累有利于植被的开始生长,但当年3月的降水量对植被生长季始期同样有重要作用,不同植被生长季末期与8月、9月温度相关性较大,而与10月、11月降水的相关性较大。  相似文献   

9.
内蒙古主要草原类型植物物候对气候波动的响应   总被引:2,自引:0,他引:2  
苗百岭  梁存柱  韩芳  梁茂伟  张自国 《生态学报》2016,36(23):7689-7701
物候是气候变化的指示者,由于不同地区植被类型不同,导致其对气候波动的响应方式不同。利用2004—2013年内蒙古草原区生态监测站群落优势种物候观测资料和同时段的气象资料,分析了不同草原类型区优势种物候期变化及其与气候因子间的相互关系,结果表明:(1)2004—2013年内蒙古草原区各时段气候波动趋势均不显著,返青前以气温降低、降水增加趋势为主;黄枯前草甸草原、典型草原以气温降低、降水增加趋势为主,荒漠草原变化趋势相反。(2)2004—2013年典型草原植物返青期平均提前4.01 d,黄枯推后10.35 d,生长季延长14.36 d;草甸草原返青期提前2.04 d,黄枯期推后12.68 d,生长季延长14.72 d;荒漠草原物候变化趋势最小,返青期平均提前了1.32 d,黄枯期平均推后了9.58 d,生长季延长了10.90 d。(3)内蒙古草原区植物返青期主要受气温波动的影响,草甸草原返青期与前3个月平均气温的负相关最为显著,气温每升高1℃,返青期约提前1.123 d;典型草原、荒漠草原返青期与前2个月平均气温的负相关最为显著气,气温每升高1℃,返青期约提前1.137 d和1.743 d。(4)典型草原区植物黄枯期受前1—2月平均气温和累积降水的共同影响,与夏季平均气温和当月降水量的相关最为显著,夏季气温每升高1℃,黄枯期约提前2.250 d,当月降水每增加1 mm,黄枯期约推后0.119 d。草甸草原、荒漠草原植物黄枯期与各时段降水、气温的相关均不显著,影响黄枯机制比较复杂。  相似文献   

10.
地表物候是生态系统环境变化的敏感指示器。为探讨物候时空变化和湿地景观生态格局与过程之间的关系,论文以若尔盖高寒湿地为例,基于1990—2020年GIMMS3g NDVI和MODIS NDVI数据集、7期Landsat TM/OLI卫星遥感数据,采用阈值法提取地表物候参数,基于面向对象的分类方法解译出土地利用数据,利用土地覆盖转换指数模型(PNTI)刻画高寒湿地动态变化过程,分析地表物候时空变化与高寒湿地景观格局演变过程的关系。结果表明:(1)1990—2020年研究区呈现前期湿地面积减少后期趋于稳定的特征,根据土地利用类型演变路径和强度分为动态平衡区、退化演变区和恢复演变区,面积占比分别56.84%、 28.14%和15.02%。(2)植被返青期(SOS)、生长盛期(POS)呈南早北晚,枯黄期(EOS)呈中间早周边晚,生长期长度(LOS)呈中间短周边长、西北短东南长的空间分布特征。SOS分布在第96—149天,EOS分布在第249—284天,LOS持续125—173d, POS分布在第179—209天。SOS、POS先推迟后提前、EOS先提前后推迟,LOS呈现先缩短后延长的规律,199...  相似文献   

11.
The main goal of our work was to estimate how large the errors are associated with repeated vegetation mapping. We compared two vegetation maps (both 1:10 000) of the Pieniny National Park—ca 2300 ha (southern Poland), the first made in 1966 and the second in 2001. We superimposed—using the ARC-INFO software—a dense grid of points (50 × 50 m) upon each map, and we determined the identity of vegetation unit in each point for the year 1966 and for the year 2001. That procedure was repeated 100 times, each time changing the position of the grid by a random vector. To estimate the size of mapping errors, we compared the patches of communities which should not change their location during 35 years: vegetation of rocky outcrops and local wet depressions, and fertile beech forest, considered a climax community for the Pieniny Mountains. Overlapping small vegetation patches (average patch size below 0.5 ha) yielded highly erroneous results, while the reliability of overlapping the communities with large patches is much higher, exceeding 80% for average patch size of 5 ha. Taking into consideration the communities of average patch size of 1 ha, we can estimate that the vegetation has undergone profound changes: some communities expanded, while others shrunk. The area of meadows remained about the same, but majority of meadows in 2001 was located in former arable fields and previous meadow areas become forested. Among beech forests, we recorded an increase of area covered by floristically rich variants at the expense of floristically poor variants. We conclude that some information about vegetation changes may be obtained only by comparing sequential vegetation maps, but the reliability of the results strongly depends on the size of vegetation patches.  相似文献   

12.
13.
Küchler  A. W. 《Plant Ecology》1984,55(1):3-10
On ecological vegetation maps, the distribution of vegetation is related to one or more features of the environment. Tolerance, competition, map scales and the environment are discussed with regard to their bearing on the geographical distribution of phytocenoses and their portrayal on maps. There are two types of ecological vegetation maps: those relating the vegetation to one environmental quality, and those with two or more such qualities. The interpretation of ecological vegetation maps is relatively simple when plant communities are related to a single quality of the biotope and difficult but usually more useful when related to several qualities. Perfection is not possible but can be approached asymptotically.  相似文献   

14.
15.
基于可见光植被指数的面向对象湿地水生植被提取方法   总被引:1,自引:0,他引:1  
井然  邓磊  赵文吉  宫兆宁 《生态学杂志》2016,27(5):1427-1436
利用ESP分割工具确定最佳分割尺度,通过多尺度分割算法创建最优分割影像,基于微型无人机影像数据生成可见光植被指数,从一系列可见光植被指数中选取一组最优植被指数,建立决策树规则,利用隶属度函数对研究区自动分类,生成水生植被分布图.结果表明: 监督分类法的总体精度为53.7%,面向对象分类法总体精度为91.7%,与基于像元的监督分类法相比,面向对象分类法显著改善了影像分类结果,并大大提高了水生植被提取精度,监督分类法的Kappa系数为0.4,而面向对象分类法的Kappa系数为0.9.这表明利用微型无人机数据生成的可见光植被指数结合面向对象分类方法提取水生植被在该研究区是可行的,并能够应用到其他类似区域.  相似文献   

16.
Distributions of 29 vegetation types in China as a function of climatic humidity or aridity were analysed using Thornthwaite's system, by employing meteorological records from 671 stations in China. The annual potential evapotranspiration and the humidity/aridity indices were calculated for every station, and distribution maps of water deficiency, water surplus and moisture index (Im) were constructed. The Im map showed that arid areas (Im<0) occupied about 56% of the country. The effect of the difference in soil water storage capacity on Thornthwaite's indices was examined, and Im values were found to differ little, although some differences were observed in actual annual evapotranspiration, water deficiency and water surplus values. Correlations between Im values and distributions of 29 vegetation types, identified from a vegetation map with a scale of 1/4000000, were investigated. The distributions of desert, steppe, woodland, deciduous forest and evergreen forest corresponded to Im values of below −40, −40–−20, −20-0, 0–60 and over 60, respectively. In addition, climatic factors delimiting the northern distribution of evergreen broadleaf forest were investigated, and it was clarified that the northern limit was restricted by combined hydrothermal conditions, and not by the low temperature in winter.  相似文献   

17.
18.
19.
Fuzzy systems vegetation theory is a comprehensive framework for the expression of vegetation theory and conceptual models, as well as the development of vegetation analyses. It is applicable to vegetation/environment relations, vegetation dynamics, and the effects of environmental dynamics on vegetation composition. Fuzzy systems vegetation theory is a fuzzy set generalization of dynamical systems theory and incorporates a formal logic and mathematics. This paper presents the elements of fuzzy systems vegetation theory and discusses the relationship of the fuzzy systems theory to the geometric concepts generally employed in vegetation theory.  相似文献   

20.
Abstract. The concept of mapping potential replacement vegetation (PRV) is proposed as a parallel to potential natural vegetation (PNV). Potential replacement vegetation (PRV) is an abstract and hypothetical vegetation which is in balance with climatic and soil factors currently affecting a given habitat, with environmental factors influencing the habitat from outside such as air pollution, and with an abstract anthropogenic influence (management) of given type, frequency and intensity. For every habitat, there is a series of possible PRV-types corresponding to the different anthropogenic influences, e.g. grazing, mowing, trampling or growing cereals. The PRV-concept is especially useful in large-scale mapping (scales > 1 : 25 000) of small areas where replacement vegetation is the focus of attention for managers and land-use planners, for example in nature reserves where the aim is conservation of replacement vegetation managed in a traditional way, or in restoration ecology where the concept may be used for defining restoration goals and evaluating the success of restoration efforts. At smaller scales, PRV-mapping may be useful for revealing the biogeographical patterns of larger areas which may be different from the corresponding PNV patterns, because replacement vegetation and natural vegetation may respond to environmental gradients at different scales. An example of medium-scale PRV-mapping through the coincidence of diagnostic species of vegetation types, based on species distribution grid data, is presented. In cultural landscapes, the advantage of using the PRV-concept instead of PNV is its direct relationship to the replacement vegetation. In the habitat mapping with respect to the replacement vegetation, the PRV concept yields more valuable results than the mapping of actual vegetation, as the latter is strongly affected by spatially variable anthropogenic influences which may be largely independent from climatic and soil factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号