首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
microRNA是一类小分子非编码RNA,参与调控多种生物学过程。该研究组前期工作中揭示了microRNA-378(miR-378)在脂肪组织中通过靶向硬脂酰CoA去饱和酶1(stearoyl-CoA desaturase 1, Scd1)调控脂分解。为了系统明确在脂肪组织中miR-378调控的代谢通路,该研究采用核磁共振技术分析了miR-378转基因小鼠和同窝野生型对照小鼠脂肪组织的代谢组差异。两种脂肪组织三个不同部位(棕色脂肪BAT、附睾旁白色脂肪gWAT、皮下白色脂肪iWAT)的代谢组学分析结果显示:miR-378转基因小鼠BAT中甘油磷酸胆碱、胆碱、丙二酸等代谢物含量更高;而gWAT脂肪组织中牛磺酸、丙二酸、次黄苷等代谢物含量更高; iWAT脂肪组织中牛磺酸、甘氨酸、谷氨酸、丙二酸等代谢物含量较高,而脂质、腺嘌呤核苷(adenine nucleoside, AMP)、二磷酸核苷(nucleoside diphosphate, ADP)及三磷酸核苷(nucleoside triphosphate, ATP)等代谢物含量较低。总体上, miR-378转基因小鼠脂肪组织中脂质含量减少,脂质分解作用及氨基酸代谢增强,整个机体的能量代谢增强。该研究结果揭示了miR-378对脂肪组织代谢具有重要调控作用。  相似文献   

2.
miR-483是近年发现的一种编码于胰岛素样生长因子2(insulin-like growth factor2,Igf2)基因第2内含子的microRNA.研究表明,高脂饮食诱导的肥胖动物的心脏、肝脏及肝、肾肿瘤组织中miR-483表达异常,但其生物学功能尚待研究.建立稳定表达miR-483并能够传代的miR-483转基因小鼠是研究其功能的重要环节.利用特异miR-483克隆引物,以小鼠基因组为模版,经PCR获得pre-miR-483片段,通过重组构建pCAGG-miR-483重组质粒.该质粒可在真核细胞中稳定表达成熟miR-483.再利用原核显微注射法建立miR-483过表达转基因小鼠.利用实时PCR检测各组织miR-483含量.结果显示,miR-483转基因小鼠心肌、骨骼肌、肝脏等组织可过表达成熟miR-483.此外,miR-483转基因过表达小鼠较野生型小鼠体重降低,提示miR-483可能在发育、代谢等方面具有调节作用.miR-483转基因小鼠模型的建立为microRNA功能研究提供了在体研究的平台.  相似文献   

3.
过氧化物酶体增殖物激活受体γ辅激活因子-1β(peroxisome proliferative activated receptor γ coactivator 1 β,Pgc-1β)与线粒体生成相关。已有研究证明,miR-34a在肝组织脂肪异位沉积中发挥重要作用,但是否与骨骼肌的脂肪异位沉积相关尚不清楚。本研究以C57Bl/6J小鼠为研究对象,通过尾静脉注射miR-34a模拟物,探讨miR-34a过表达对小鼠骨骼肌脂肪沉积的影响。组织切片进行油红O染色及甘油三酯含量测定揭示,miR-34a过表达的小鼠骨骼肌组织中脂滴积累及甘油三酯含量显著增加。实时荧光定量PCR(qRT-PCR)显示,与对照鼠比较,miR-34a处理的小鼠骨骼肌组织中的脂肪酸合成酶(Fas)表达显著上调,而脂肪酸氧化分解相关基因产物肉毒碱棕榈酰基转移酶1α(Cpt 1α)表达显著下调,提示miR-34a调控骨骼肌内脂肪的沉积机制可能是通过促进脂肪酸生成和抑制脂肪酸分解实现的。qRT-PCR和Western印迹证明,miR-34a可抑制Pgc-1β蛋白的表达。CoxⅡ/28S比例(线粒体定量指标)测定提示,注射miR-34a模拟物导致小鼠骨骼肌线粒体数目显著下调。生物信息分析显示,Pgc-1β mRNA的3′-UTR存在 miR-34a的潜在识别位点,因此miR-34a可能通过靶向识别Pgc-1β的3′-UTR抑制Pgc-1β表达,从而抑制线粒体生成。上述结果证明,miR-34a能通过靶向抑制PGC-1β表达,抑制线粒体生成,继而减少脂肪酸氧化分解,导致骨骼肌脂肪沉积增加。此外,上调脂肪酸合成酶也可能是miR-34a导致骨骼肌脂肪沉积增加的另一原因,其作用机制需进一步研究。  相似文献   

4.
目的 构建稳定过表达的miR-31转基因小鼠,检测其主要组织器官中miR-31的表达变化情况并对在体miR-31过表达的应用提供合格的工具鼠。方法 使用Gateway cloning技术构建miR-31过表达载体,使用DNA显微注射技术将构建好的载体注入受精卵内,随后转移至假孕母鼠内,待其自然生产。将新生小鼠提取尾部DNA,PCR及琼脂糖凝胶电泳鉴定miR-31过表达阳性小鼠,筛选阳性小鼠并饲养繁殖。另取阳性小鼠,提取主要组织器官的miRNA并使用RT-PCR检测其miR-31的表达量。同时对比阳性小鼠和野生型小鼠神经系统中Nestin的表达和神经干细胞的数量。结果 成功构建了miR-31过表达转基因小鼠,并在屏障环境下饲养繁殖至14代以上。各主要组织器官miR-31的表达均升高且稳定表达。阳性小鼠Nestin的表达和神经干细胞数量均高于野生型小鼠。结论 通过使用Gateway cloning技术成功构建了miR-31过表达转基因小鼠,且在各代小鼠中miR-31的表达稳定,神经系统内的神经干细胞数量多于野生型小鼠,可为进一步研究miR-31过表达后在体内的功能和神经系统疾病的治疗提供良好的工具小鼠。  相似文献   

5.
刘辰东  杨露  蒲红州  杨琼  黄文耀  赵雪  朱砺  张顺华 《遗传》2017,39(10):888-896
DNA甲基化、组蛋白修饰和miRNA表达调控是表观遗传调控的3种重要方式,其在基因表达调控中发挥着关键作用。适当运动有益于身心健康。骨骼肌作为运动的主体组织,运动可以提高其代谢能力,改善其线粒体生物学功能,调控肌纤维类型转化,增加骨骼肌力量。近年来越来越多的研究表明,表观遗传调控在机体适应运动过程中发挥着重要作用,DNA甲基化、组蛋白修饰和miRNA表达调控等表观遗传调控方式通过调控骨骼肌基因表达来改变骨骼肌代谢能力、线粒体生物学功能和肌纤维类型,从而适应运动变化。本文对近年来运动对骨骼肌基因DNA甲基化、组蛋白修饰和相应miRNA表达调控等3种表观遗传调控方式的研究现状进行了综述,以期为进一步研究运动改善机体机能和健康提供参考。  相似文献   

6.
心肌细胞特异性miR-30b转基因小鼠的建立及其功能研究   总被引:2,自引:2,他引:0  
MicroRNAs(miRNAs)基因芯片结果显示,携带有MYH7基因突变的家族性肥厚性心肌病病人的心脏组织以及小鼠心力衰竭模型中miR-30b表达下调,提示miR-30b可能在心脏疾病发生发展过程中发挥了重要功能.为研究miR-30b在心脏组织中的功能,本实验室首先建立了在心肌细胞特异性启动子琢肌球蛋白重链(琢-MHC,5.5 kb)控制下过表达miR-30b的转基因小鼠.通过qRT-PCR方法,证实miR-30b表达水平在转基因小鼠心脏组织中明显升高(P0.05).miR-30b转基因小鼠心重/体重比和左心室/体重比无明显变化,心肌组织结构未见异常.目前,关于miR-30b在心肌梗死中的功能及相关机制未见报道.本文通过冠状动脉左前降支结扎法建立心肌缺血再灌注(ischemia-reperfusion,I/R)模型,以假手术组作为对照组.生化检测结果及TTC-Evans blue双染结果显示,I/R损伤后,与野生型小鼠相比,转基因小鼠LDH、CK-MB和cTn玉浓度显著减小(P0.05),并且心肌梗死面积明显减少(P0.05).超声心动图检测结果显示,转基因小鼠心功能显著改善.由此得出结论:miR-30b对缺血再灌注损伤的心肌具有保护作用,该研究成果可能为预防和治疗心肌梗死提供新策略.  相似文献   

7.
Hou N  Wang J  Li ZH  Cao Y  Fan KJ  Yang X 《遗传》2012,34(3):326-334
以往的miRNA芯片研究结果显示, miR-27b在人类心脏疾病标本和压力负荷引起的小鼠心肌肥厚模型中表达水平明显升高, 提示其在心脏疾病发生过程中发挥了重要功能。为研究miR-27b在心脏组织中的功能, 文章建立了在心肌细胞特异性 a-肌球蛋白重链(a-MHC)启动子(5.5 kb)控制下过表达miR-27b的转基因小鼠。通过Real-time PCR检测, 发现miR-27b前体和成熟体表达水平在转基因小鼠心脏组织中明显升高。miR-27b转基因小鼠不仅出现心肌肥厚, 还表现出明显的心肌纤维化。进一步研究表明心肌纤维化的关键调节分子金属基质蛋白酶13(MMP13)是miR-27b的靶分子, 在miR-27b转基因小鼠中MMP13显著下调, 胶原分子I和 III则显著上调。此外, 还发现miR-27b转基因小鼠会出现心脏超微结构的损伤。以上研究结果表明, miR-27b可能通过抑制MMP13促进心肌纤维化。  相似文献   

8.
侯宁  王剑  李振华  曹阳  范开吉  杨晓 《遗传》2012,34(3):326-334
以往的miRNA芯片研究结果显示, miR-27b在人类心脏疾病标本和压力负荷引起的小鼠心肌肥厚模型中表达水平明显升高, 提示其在心脏疾病发生过程中发挥了重要功能。为研究miR-27b在心脏组织中的功能, 文章建立了在心肌细胞特异性 a-肌球蛋白重链(a-MHC)启动子(5.5 kb)控制下过表达miR-27b的转基因小鼠。通过Real-time PCR检测, 发现miR-27b前体和成熟体表达水平在转基因小鼠心脏组织中明显升高。miR-27b转基因小鼠不仅出现心肌肥厚, 还表现出明显的心肌纤维化。进一步研究表明心肌纤维化的关键调节分子金属基质蛋白酶13(MMP13)是miR-27b的靶分子, 在miR-27b转基因小鼠中MMP13显著下调, 胶原分子I和 III则显著上调。此外, 还发现miR-27b转基因小鼠会出现心脏超微结构的损伤。以上研究结果表明, miR-27b可能通过抑制MMP13促进心肌纤维化。  相似文献   

9.
磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxykinase,PEPCK)是催化糖异生的限速酶,其在骨骼肌中表达量很低,作用尚不明确。本研究构建了在骨骼肌中特异表达PEPCK-C的转基因小鼠(PEPCK-Cmus小鼠),探讨PEPCK-C在小鼠骨骼肌中特异性表达后对运动和能量代谢的影响。结果显示,与同龄的野生型小鼠比较,PEPCK-Cmus转基因小鼠运动能力更强,胰岛素敏感性更高,血脂水平较低;骨骼肌中有明显脂肪堆积,但空腹血糖、体重、腹部脂肪体积没有差异。结果表明,PEPCK-C基因在小鼠骨骼肌中的特异性表达,提高了小鼠的运动耐力和糖平衡能力,并使血脂维持在较低水平,提示PEPCK-C基因在骨骼肌中的表达对机体的能量代谢有重要作用。  相似文献   

10.
11.
miR-122过表达转基因小鼠质粒构建及其功能验证   总被引:1,自引:0,他引:1  
目的:比较两种miR-122转基因小鼠过表达载体构建方法,为建立miR-122过表达转基因小鼠奠定基础。方法:PCR扩增长约291bp的pre-miR-122的序列,分别定向克隆到pBROAD3-GFP载体GFP基因上游内含子或下游3'UTR区域,两种质粒分别转染293T细胞,Q-PCR检测miR-122和GFP的表达水平,并观察GFP绿色荧光。miR-122 sensor reporter是将3个miR-122成熟序列的反义序列串联克隆至psiCHECK2载体luciferase 3'UTR中,然后分别与2种miR-122过表达质粒载体共转染293T细胞,最后检测荧光素酶活性来鉴定miR-122调控功能。结果:2种构建方法的miR-122表达水平都明显增高,而只有插入到GFP基因3'UTR的质粒表达GFP功能正常。结论:构建microRNA过表达载体时,microRNA位于报告基因3'UTR区域不会影响microRNA和报告基因的功能;构建的两种miR-122过表达质粒载体都可应用到转基因小鼠研究中,而将miR-122插入到GFP下游的方法则更利于miR-122的表达。  相似文献   

12.
MicroRNAs (miRNAs) 是一类小非编码RNA,近年研究发现其在骨骼肌发育调控中发挥重要作用.为探明miR-143-3p在C2C12成肌细胞分化中的调控作用,采用 real-time PCR 检测了miR-143-3p在小鼠各组织及C2C12成肌细胞分化过程中的表达;使用miR-143-3p 的模拟物和特异性抑制剂分别处理细胞,采用 real-time PCR 和 Western印迹分别检测成肌因子 MyoG和成肌标志基因 MyHC mRNA和蛋白水平的变化;用免疫荧光染色的方法观察肌管的形成.结果显示,miR-143-3p在小鼠各组织中均有表达,并且随着细胞分化表达量逐渐增加;C2C12成肌细胞过表达 miR-143-3p,与对照组相比,成肌调控因子MyoG和成肌标志基因MyHC 的mRNA和蛋白表达均显著升高,肌管数量明显增多;抑制剂处理结果显示,细胞分化被显著抑制.检测miR-143-3p对MyHC各亚型表达的影响发现,miR-143-3p表达的变化并不直接影响MyHC各亚型的表达.以上结果说明, miR-143-3p在骨骼肌和成肌细胞中均有表达,能够促进C2C12成肌细胞分化,但并不直接调控MyHCs的表达.  相似文献   

13.
旨在克隆牦牛miR-378的前体序列,阐明其组织表达规律,结合bta-miR-378靶基因的生物信息学预测和分析,探讨miR-378在牦牛生长发育过程中的调控功能。采用PCR方法成功克隆类乌齐牦牛miR-378前体序列,实时荧光定量PCR(RT-qPCR)检测miR-378-3p在各组织中的表达模式,结合生物信息学软件TargetScan、DAVID以及数据库NCBI、miRbase等对miR-378进行保守性分析、靶基因预测及其生物学功能分析。结果表明,miR-378在各物种间高度保守,且miR-378-3p在各组织中广泛表达,其中在臀大肌中表达水平最高,显著高于其他组织(P<0.01),在臀脂中的表达高于卵巢、大脑、乳腺和肝脏。获得的272个靶基因主要参与细胞分化、细胞发育、大分子代谢等多个生物学过程,涉及孕酮介导的卵母细胞成熟、促性腺激素释放激素(GnRH)信号通路等,由此推测,miR-378可能在卵泡发育、卵母细胞成熟过程中起关键作用,进而影响母牦牛的繁殖性能。  相似文献   

14.
骨骼肌是动物机体最重要的器官之一,研究骨骼肌发育调控机制对于肌肉相关疾病的诊断以及家畜肉质的改善都有着重要意义。骨骼肌发育调控是一个复杂的过程,受到大量肌肉分泌因子和信号通路的调节。此外,为了维持体内代谢稳态并最大限度地利用能量,机体协调多个组织器官形成了复杂而又精密的代谢调控网络,对于调控骨骼肌发育也发挥着重要的作用。随着组学技术的发展,人们对于组织器官通讯的潜在机制进行了深入研究。本文综述了脂肪组织、神经组织、肠道等组织器官通讯对于骨骼肌发育的影响,以期为靶向调控骨骼肌发育提供理论基础。  相似文献   

15.
目的:研究miR-30b的组织特异性,检测其在心,肝,脑,肾,脾和骨骼肌中的表达情况。方法:选取C57BL/6J雄性小鼠6只,用real-time PCR方法检测小鼠心,肝,脑,肾,脾和骨骼肌中miR-30b的表达量。结果:miR-30b在小鼠肝脏中表达量最低,与肝相比,在心,脑,肾,脾和骨骼肌中的相对表达量分别为13.13±0.899,9.497±0.717,4.478±1.031,6.751±0.596,2.538±0.79。且与肝相比均具有统计学意义(P<0.05)。结论:miR-30b在各组织中的表达存在差异,在心脏中的表达量最高,提示miR-30b可能与心脏的发生发展密切相关,为深入探索miR-30b的功能奠定了基础。  相似文献   

16.
目的探讨miR-5572转基因小鼠构建病态窦房结综合征疾病模型的可行性。方法繁殖与鉴定了miR-5572 F1及F2代野生型纯合子及杂合子小鼠,并通过形态学、心电图记录及窦房结组织Cav1.2、Cav1.3mRNA和蛋白表达水平测定来观察疾病模型。结果 F2代miR-5572纯合子敲入小鼠在形态上较野生型小鼠生长缓慢,体型较小。相较于杂合子和野生型小鼠,纯合小鼠的平均心率明显偏低(P0.05),差异有显著性。miR-5572纯合子小鼠窦房结组织Cav1.2、Cav1.3 mRNA和蛋白表达水平低于野生型(P0.05),差异有显著性。结论过表达miR-5572转基因小鼠可以构建病态窦房结综合征疾病模型。  相似文献   

17.
亮氨酸是机体必需的小分子代谢物,其作为信号分子广泛参与了对机体多种生理功能的维持和调控。亮氨酸可参与机体对三大营养物质(蛋白质、糖、脂)代谢的调控,还与机体多种内分泌激素的分泌密切相关。此外,亮氨酸还能被机体的代谢中枢下丘脑所感应,并参与对外周的糖脂能量稳态的调控。鉴于营养相关慢性疾病的发病率不断攀升,对亮氨酸这一重要内源性分子的生理功能进行进一步探索将提供重要的指导意义。  相似文献   

18.
目的:建立miR-106b转基因小鼠模型,探讨其在阿尔茨海默病(Alzheimer’s disease, AD)发病中的作用。方法:构建miR-106b表达载体,显微注射法建立miR-106b转基因小鼠。PCR鉴定转基因小鼠的基因型,real time RT-PCR检测miR-106b转基因小鼠脑组织中miR-106b的表达情况,Western blot检测miR-106b转基因小鼠脑组织中TGFBR2蛋白的表达。结果:构建了高表达miR-106b转基因小鼠;与对照相比,miR-106b转基因小鼠脑组织中TGFBR2蛋白的表达升高。结论:miR-106b转基因小鼠的建立为研究该microRNA在AD发病中的作用提供了工具。  相似文献   

19.
郭鑫  王福俤 《生命科学》2012,(8):917-926
铁代谢在维持生命活动中至关重要,机体铁代谢紊乱会导致贫血和人类遗传性血色病等诸多疾病,对人体健康造成危害。在铁代谢研究领域,小鼠模型具有人群及细胞模型所不具备的优势,可以最准确的表现相应基因及通路在铁代谢调控中的生理作用。利用基因敲除及转基因小鼠模型,许多铁代谢相关的基因及调控通路被发现,有助于深入了解铁稳态调控的分子机制。这些小鼠模型为治疗铁代谢紊乱相关疾病潜在药物的开发和评估提供了理想的平台。  相似文献   

20.
代谢是基本的生命活动,代谢网络以代谢酶和代谢物为中心,为细胞的生命活动提供物质和能量基础。一方面,代谢酶发挥经典的功能,催化不同代谢通路中的代谢物,并受到严密调控,维持代谢稳态。另一方面,近年来国内外的研究,包括我们研究团队的工作证实了某些代谢酶和代谢物还可发挥非经典的兼有功能(moonlighting functions),参与信号通路调控和/或作为一个信号分子,对代谢进行更精细的调控,在机体的生理和病理过程中发挥关键作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号