首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
植物病毒的运动蛋白是由病毒编码的一种蛋白,在病毒的细胞间运动中起重要作用。现在,发现的运动蛋白越来越多,对其一级结构、在植物体内的表达、定位和功能日益清楚。但运动蛋白在体内的修饰及其与运动蛋白功能的关系的研究还刚开始,对与运动蛋白作用的寄主因子了解很少。植物运动蛋白的研究对植物病毒细胞间运动和植物体内特有的胞间连丝的研究提供了很好的突破口。  相似文献   

2.
P3N-PIPO是马铃薯Y病毒属(Potyvirus)病毒基因组中近年来新鉴定的编码蛋白。为研究P3N-PIPO在病毒与宿主互作过程中的功能,本研究以马铃薯Y病毒(potato virus Y,PVY)和马铃薯作为研究系统,用融合PCR技术扩增得到PVY编码蛋白P3N-PIPO的DNA序列,用于构建酵母双杂交诱饵质粒。为钓取马铃薯组织细胞内不同位置的互作蛋白,本研究构建了p BT3-N-P3N-PIPO、p BT3-C-P3N-PIPO、p BT3-STE-P3N-PIPO、p BT3-SUC-P3N-PIPO和p DHB1-P3N-PIPO 5个诱饵质粒,并进行自激活或毒性检测,最终获得p BT3-STE-P3N-PIPO、p BT3-SUC-P3N-PIPO和p DHB1-P3N-PIPO 3个可用于筛选马铃薯c DNA文库的诱饵质粒。  相似文献   

3.
NDV的P基因能够通过RNA编辑机制编码3种病毒蛋白P、V和W。为了初步确定新城疫病毒P、V和W的功能结构域及其在P基因中位置,对这3种具有相同N端不同C端的病毒蛋白进行生物信息学分析。分别设计针对基因Ⅱ、Ⅲ、Ⅳ和Ⅶ型以及class Ⅰ NDV毒株P基因的引物。RT-PCR获得5种基因型NDV P基因的正确序列。通过核苷酸序列预测P基因表达产物的氨基酸序列,并进行二级结构预测和三级结构模拟。将SV5 V蛋白空间结构作为模板,从而分析获得了NDVP/V/W基因编码产物的二级结构以及部分空间结构。综合各种分析数据,预测P蛋白辅助N蛋白折叠的结构域位于N端前50 aa内;介导P蛋白四聚体形成的coiled-coil结构位于221-290 aa范围内;介导P蛋白与基因组的作用的X结构域位于291-392 aa范围内。V蛋白的C端结构域的编码区域位于P蛋白132-239 aa编码区域内。  相似文献   

4.
森林脑炎(TBE)病毒属黄病毒科,基因姐RNA含有单个开放阅读框架,5′端编码病毒的结构蛋白,3′端编码非结构蛋白。翻译成聚蛋白后,通过细胞和病毒编码的蛋白酶裂解产生单个的病毒蛋白。成熟的病毒是由两个相关的E和M膜蛋白脂质包膜所包围的立体对称的核衣壳组成。包膜E蛋白在病毒的感染周期中对细胞的识别和穿入细胞具有极其重要的功能,同时E蛋白诱导保护性的免疫反应,E蛋白内某一位点单个氨基酸的改变可引起病毒毒力的改变。因此,对TBE病毒分子生物学的研究有助于了解病毒与宿主细胞相互作用的机理,为病毒感染的特异性诊断、疫苗的研制和抗病毒药物的设计提供理论依据。  相似文献   

5.
PCR法获得编码EB病毒早期蛋白P54的基因BMRFl,序列分析后亚克隆入原核表达载体pET30a。表达质粒pET30a-BMRF1在大肠杆菌BL21(DE3)菌株中经IPTG诱导后表达了P54抗原,SDS—PAGE表明其相对分子质量为51000;采用镍离子亲和柱纯化重组蛋白。Western印迹结果表明纯化蛋白免疫BALB/c小鼠后产生了P54特异性抗体。间接免疫荧光表明免疫血清可以识别激活的Raji细胞中表达的P54蛋白。以上结果表明构建了原核表达质粒pET30a-BMRF1并在大肠杆菌细胞中成功表达EB病毒早期蛋白P54,表达蛋白具有很好的抗原性和免疫原性。  相似文献   

6.
庚型肝炎病毒(HGV)/GB病毒C(GBV-C)疑似引起人类庚型肝炎[1~3].HGV和GBV-C为同一病毒的两个不同分离株,本文将其称为GBV-C/HGV.GBV-C/HGV属黄病毒科,为单股正链RNA病毒,全长约9.4kb.基因组中仅含有一个单一开放阅读框,编码E1、E2结构蛋白和NS2、NS3、NS4及NS5非结构蛋白.GBV-C/HGV的NS3蛋白具备丝氨酸蛋白酶活性和解旋酶活性[3],在NS3蛋白中还存在线性抗原表位[4],因此,NS3蛋白是GBV-C/HGV的重要功能蛋白.  相似文献   

7.
口蹄疫病毒非结构蛋白P3区的基因序列及分析   总被引:4,自引:0,他引:4  
以口蹄疫Akesu/58分离株的53代牛舌皮病料为材料,采用RT-PCR法,扩增和克隆了两个约1.5kb的DNA片段.核酸序列测得结果对接后,涵盖了全部P3区的基因序列.口蹄疫Akesu/58分离株基因组P3区的核酸序列共计2,724nt,包括一个终止密码子TAA,共编码907个氨基酸;其中非结构蛋白3A的基因是459nt,编码153个氨基酸;3个3B(VPg)基因分别是69、72和72nt,氨基酸分别为23、24和24;3C是639nt,213个氨基酸;3D是1,413nt,471个氨基酸.各蛋白间由Glu/Gly(Ser)连接.序列比较显示3A的C端易变,其它区的变易呈零星散在.  相似文献   

8.
以口蹄疫Akesu/ 5 8分离株的 5 3代牛舌皮病料为材料 ,采用RT PCR法 ,扩增和克隆了两个约 1.5kb的DNA片段。核酸序列测得结果对接后 ,涵盖了全部P3区的基因序列。口蹄疫Akesu/ 5 8分离株基因组P3区的核酸序列共计 2 ,72 4nt,包括一个终止密码子TAA ,共编码 90 7个氨基酸 ;其中非结构蛋白 3A的基因是 45 9nt,编码 15 3个氨基酸 ;3个 3B(VPg)基因分别是 6 9、72和 72nt,氨基酸分别为 2 3、2 4和 2 4;3C是 6 39nt,2 13个氨基酸 ;3D是1,413nt ,471个氨基酸。各蛋白间由Glu/Gly(Ser)连接。序列比较显示 :3A的C端易变 ,其它区的变易呈零星散在  相似文献   

9.
目的获得在昆虫细胞中有效表达脊髓灰质炎病毒P1基因和3CD基因的重组杆状病毒,为制备脊髓灰质炎病毒样颗粒疫苗提供了科学依据。方法将I型脊髓灰质炎病毒(Mahoney株)的P1基因和3CD基因构建到供体质粒中,通过flash BAC ULTRATM系统制备重组杆状病毒;将Mahoney株的P1基因与Sabin株Ⅲ型的3CD基因组合,用同样方法构建重组杆状病毒。通过接种昆虫细胞草地贪夜蛾细胞(sf-9细胞)对两种病毒进行扩增,再接种昆虫细胞粉纹夜蛾细胞(High five细胞)扩大培养,并通过定量PCR对P1和3CD基因的表达进行验证,利用Western blot检测P1蛋白的表达及被3CD蛋白酶剪切的情况。结果获得了两株稳定表达脊髓灰质炎病毒P1和3CD基因的重组杆状病毒。其中,重组杆状病毒(Bac U-Mahoney-P1-3CD)在感染细胞后,3CD蛋白酶表达量较低,不能有效剪切P1前体蛋白;而重组杆状病毒(Bac U-Mahoney-P1-Sabin PV3 3CD)感染细胞后,3CD蛋白酶的表达量和对P1前体蛋白的剪切效力都有明显提高(P<0.05)。结论将Mahoney株P1基因和Sabin株Ⅲ型的3CD基因的组合构建重组杆状病毒,可有效地在昆虫细胞中表达P1和3CD基因,并且Sabin株Ⅲ型的3CD蛋白酶可有效地剪切Mahoney株的P1前体蛋白。  相似文献   

10.
应用马铃薯X病毒(PVX)载体研究大麦黄矮病毒运动蛋白(BYDV-MP)核定位信号对PVX病毒运动的影响。我们将BYDV-MP克隆到PVX改造载体pGR107中,同时用GFP作为指示蛋白,研究BYDV-MP对异源病毒PVX系统运动的影响。侵染烟草发现BYDV-MP能够在PVX载体中表达并能加强病毒的系统侵染;将PVX编码系统运动蛋白25kD基因进行缺失突变,重复上述试验发现BYDV-MP能够补偿PVX系统运动;将BYDV-MP的N端的第五、六位氨基酸和第七位氨基酸进行替换突变,侵染烟草发现BYDV-MP的N端的第五、六位氨基酸突变不能完全抑制PVX系统运动,但是可以延迟并减弱PVX系统运动;BYDV-MP的N端的第七位氨基酸突变能够完全抑制PVX系统运动。  相似文献   

11.
Intercellular transport of viruses through cytoplasmic connections, termed plasmodesmata (PD), is essential for systemic infection in plants by viruses. Previous genetic and ultrastructural data revealed that the potyvirus cyclindrical inclusion (CI) protein is directly involved in cell-to-cell movement, likely through the formation of conical structures anchored to and extended through PD. In this study, we demonstrate that plasmodesmatal localization of CI in N. benthamiana leaf cells is modulated by the recently discovered potyviral protein, P3N-PIPO, in a CI:P3N-PIPO ratio-dependent manner. We show that P3N-PIPO is a PD-located protein that physically interacts with CI in planta. The early secretory pathway, rather than the actomyosin motility system, is required for the delivery of P3N-PIPO and CI to PD. Moreover, CI mutations that disrupt virus cell-to-cell movement compromise PD-localization capacity. These data suggest that the CI and P3N-PIPO complex coordinates the formation of PD-associated structures that facilitate the intercellular movement of potyviruses in infected plants.  相似文献   

12.
The cauliflower mosaic virus (CaMV) has an icosahedral capsid composed of the viral protein P4. The viral product P3 is a multifunctional protein closely associated with the virus particle within host cells. The best-characterized function of P3 is its implication in CaMV plant-to-plant transmission by aphid vectors, involving a P3-virion complex. In this transmission process, the viral protein P2 attaches to virion-bound P3, and creates a molecular bridge between the virus and a putative receptor in the aphid's stylets. Recently, the virion-bound P3 has been suggested to participate in cell-to-cell or long-distance movement of CaMV within the host plant. Thus, as new data accumulate, the importance of the P3-virion complex during the virus life-cycle is becoming more and more evident. To provide a first insight into the knowledge of the transmission process of the virus, we determined the 3D structures of native and P3-decorated virions by cryo-electron microscopy and computer image processing. By difference mapping and biochemical analysis, we show that P3 forms a network around the capsomers and we propose a structural model for the binding of P3 to CaMV capsid in which its C terminus is anchored deeply in the inner shell of the virion, while the N-terminal extremity is facing out of the CaMV capsid, forming dimers by coiled-coil interactions. Our results combined with existing data reinforce the hypothesis that this coiled-coil N-terminal region of P3 could coordinate several functions during the virus life-cycle, such as cell-to-cell movement and aphid-transmission.  相似文献   

13.
A small open reading frame (ORF), pipo, overlaps with the P3 coding region of the potyviral polyprotein ORF. Previous evidence suggested a requirement for pipo for efficient viral cell-to-cell movement. Here, we provide immunoblotting evidence that the protein PIPO is expressed as a trans-frame protein consisting of the amino-terminal half of P3 fused to PIPO (P3N-PIPO). P3N-PIPO of Turnip mosaic virus (TuMV) fused to GFP facilitates its own cell-to-cell movement. Using a yeast two-hybrid screen, co-immunoprecipitation assays, and bimolecular fluorescence complementation (BiFC) assays, we found that P3N-PIPO interacts with host protein PCaP1, a cation-binding protein that attaches to the plasma membrane via myristoylation. BiFC revealed that it is the PIPO domain of P3N-PIPO that binds PCaP1 and that myristoylation of PCaP1 is unnecessary for interaction with P3N-PIPO. In PCaP1 knockout mutants (pcap1) of Arabidopsis, accumulation of TuMV harboring a GFP gene (TuMV-GFP) was drastically reduced relative to the virus level in wild-type plants, only small localized spots of GFP were visible, and the plants showed few symptoms. In contrast, TuMV-GFP infection in wild-type Arabidopsis yielded large green fluorescent patches, and caused severe stunting. However, viral RNA accumulated to high level in protoplasts from pcap1 plants indicating that PCaP1 is not required for TuMV RNA synthesis. In contrast to TuMV, the tobamovirus Oilseed rape mosaic virus did not require PCaP1 to infect Arabidopsis plants. We conclude that potyviral P3N-PIPO interacts specifically with the host plasma membrane protein PCaP1 to participate in cell-to-cell movement. We speculate that PCaP1 links a complex of viral proteins and genomic RNA to the plasma membrane by binding P3N-PIPO, enabling localization to the plasmodesmata and cell-to-cell movement. The PCaP1 knockout may contribute to a new strategy for recessive resistance to potyviruses.  相似文献   

14.
P1 peptidase--a mysterious protein of family Potyviridae   总被引:1,自引:0,他引:1  
The Potyviridae family, named after its type member, Potato virus Y (PVY), is the largest of the 65 plant virus groups and families currently recognized. The coding region for P1 peptidase is located at the very beginning of the viral genome of the family Potyviridae. Until recently P1 was thought of as serine peptidase with RNA-binding activity and with possible influence in cell-to-cell viral spreading. This N-terminal protein, among all of the potyviruses, is the most divergent protein: varying in length and in its amino acid sequence. Nevertheless, P1 peptidase in many ways is still a mysterious viral protein. In this review, we would like to offer a comprehensive overview, discussing the proteomic, biochemical and phylogenetic views of the P1 protein.  相似文献   

15.
Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 5' end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement.  相似文献   

16.
Cell-to-cell movement of Beet necrotic yellow vein virus (BNYVV) is driven by a set of three movement proteins--P42, P13, and P15--organized into a triple gene block (TGB) on viral RNA 2. The first TGB protein, P42, has been fused to the green fluorescent protein (GFP) and fusion proteins between P42 and GFP were expressed from a BNYVV RNA 3-based replicon during virus infection. GFP-P42, in which the GFP was fused to the P42 N terminus, could drive viral cell-to-cell movement when the copy of the P42 gene on RNA 2 was disabled but the C-terminal fusion P42-GFP could not. Confocal microscopy of epidermal cells of Chenopodium quinoa near the leading edge of the infection revealed that GFP-P42 localized to punctate bodies apposed to the cell wall whereas free GFP, expressed from the replicon, was distributed uniformly throughout the cytoplasm. The punctate bodies sometimes appeared to traverse the cell wall or to form pairs of disconnected bodies on each side. The punctate bodies co-localized with callose, indicating that they are associated with plasmodesmata-rich regions such as pit fields. Point mutations in P42 that inhibited its ability to drive cell-to-cell movement also inhibited GFP-P42 punctate body formation. GFP-P42 punctate body formation was dependent on expression of P13 and P15 during the infection, indicating that these proteins act together or sequentially to localize P42 to the plasmodesmata.  相似文献   

17.
We recently reported that antibody against purified P450 3A1 (P450p) recognizes two electrophoretically distinct proteins (50 and 51 kDa) in liver microsomes from male and female rats, as determined by Western immunoblotting. Depending on the source of the liver microsomes, the 51-kDa protein corresponded to 3A1 and/or 3A2 which could not be resolved by sodium dodecyl sulfate (SDS)polyacrylamide gel electrophoresis. The other protein (50 kDa) appears to be another member of the P450 IIIA gene family. Both proteins were markedly intensified in liver microsomes from male or female rats treated with pregnenolone-16α-carbonitrile, dexamethasone, troleandomycin, or chlordane. In contrast, treatment of male or female rats with phenobarbital intensified only the 51-kDa protein. Treatment of male rats with Aroclor 1254 induced the 51-kDa protein, but suppressed the 50-kDa form. In addition to their changes in response to inducers, the 50- and 51-kDa proteins also differed in their developmental expression. For example, the 50-kDa protein was not expressed until weaning (3 weeks), whereas the 51-kDa protein was expressed even in 1-week-old rats. At puberty (between weeks 5 and 6), the levels of the 50-kDa and 51-kDa proteins markedly declined in female but not in male rats, which introduced a large sex difference (male > female) in the levels of both proteins. Changes in the level of the 51-kDa protein were paralleled by changes in the rate of testosterone 2β, 6β-, and 15β-hydroxylation. In male rats, the marked increase in the levels of the 50-kDa protein between weeks 2 and 3 coincided with a three- to four fold increase in the rate of testosterone 2β-, 6β-, and 15β-hydroxylation, which suggests that the 50-kDa protein catalyzes the same pathways of testosterone oxidation as the 51-kDa protein. However, this developmental increase in testosterone oxidation may have resulted from an activation of the 51-kDa 3A protein. These results indicate that the two electrophoretically distinct proteins recognized by antibody against P450 3A1 are regulated in a similar but not identical manner, and suggest that the 51-kDa 3A protein is the major microsomal enzyme responsible for catalyzing the 2β-, 6β-, and 15β-hydroxylation of testosterone.  相似文献   

18.
RNA silencing in transgenic and virus-infected plants involves a mobile silencing signal that can move cell-to-cell and systemically through the plant. It is thought that this signal can influence long-distance movement of viruses because protein suppressors of silencing encoded in viral genomes are required for long-distance virus movement. However, until now, it was not known whether the mobile signal could also influence short-range virus movement between cells. Here, through random mutation analysis of the Potato Potexvirus X (PVX) silencing suppressor P25, we provide evidence that it does. All mutants that were defective for silencing suppression were also non-functional in viral cell-to-cell movement. However, we identified mutant P25 proteins that were functional as silencing suppressors but not as movement proteins and we conclude that suppression of silencing is not sufficient to allow virus movement between cells: there must be a second P25 function that is independent of silencing but also required for cell-to-cell movement. Consistent with this hypothesis, we identified two classes of suppressor-inactive P25 mutants. One class of these mutants is proposed to be functional for the accessory function because their failure to support PVX movement could be complemented by heterologous suppressors of silencing. The second class of P25 mutants is considered defective for both the suppressor and second functions because the heterologous silencing suppressors did not restore virus movement. It is possible, based on analyses of short interfering RNA accumulation, that P25 suppresses silencing by interfering with either assembly or function of the effector complexes of RNA silencing.  相似文献   

19.
Point mutations were introduced into the genes encoding the triple gene bock movement proteins P13 and P15 of beet necrotic yellow vein virus (BNYVV). Mutations which disabled viral cell-to-cell movement in Chenopodium quinoa were then tested for their ability to act as dominant negative inhibiters of movement of wild-type BNYVV when expressed from a co-inoculated BNYVV RNA 3-based replicon. For P13, three types of mutation inhibited the movement function: non-synomynous mutations in the N- and C-terminal hydrophobic domains, a mutation at the boundary between the N-terminal hydrophobic domain and the central hydrophilic domain (mutant P13-A12), and mutations in the conserved sequence motif in the central hydrophilic domain. However, only the boundary mutant P13-A12 strongly inhibited movement of wild-type virus when expressed from the co-inoculated replicon. Similar experiments with P15 detected four movement-defective mutants which strongly inhibited cell-to-cell movement of wild-type BNYVV when the mutants were expressed from a co-inoculated replicon. Beta vulgaris transformed with two of these P15 mutants were highly resistant to fungus-mediated infection with BNYVV.  相似文献   

20.
We have recently used a green fluorescent protein (GFP) fusion to the gammab protein of Barley stripe mosaic virus (BSMV) to monitor cell-to-cell and systemic virus movement. The gammab protein is involved in expression of the triple gene block (TGB) proteins encoded by RNAbeta but is not essential for cell-to-cell movement. The GFP fusion appears not to compromise replication or movement substantially, and mutagenesis experiments demonstrated that the three most abundant TGB-encoded proteins, betab (TGB1), betac (TGB3), and betad (TGB2), are each required for cell-to-cell movement (D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65-75, 2001). We have now extended these analyses by engineering a fusion of GFP to TGB1 to examine the expression and interactions of this protein during infection. BSMV derivatives containing the TGB1 fusion were able to move from cell to cell and establish local lesions in Chenopodium amaranticolor and systemic infections of Nicotiana benthamiana and barley. In these hosts, the GFP-TGB1 fusion protein exhibited a temporal pattern of expression along the advancing edge of the infection front. Microscopic examination of the subcellular localization of the GFP-TGB1 protein indicated an association with the endoplasmic reticulum and with plasmodesmata. The subcellular localization of the TGB1 protein was altered in infections in which site-specific mutations were introduced into the six conserved regions of the helicase domain and in mutants unable to express the TGB2 and/or TGB3 proteins. These results are compatible with a model suggesting that movement requires associations of the TGB1 protein with cytoplasmic membranes that are facilitated by the TGB2 and TGB3 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号