首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cell-to-cell movement of Beet necrotic yellow vein virus (BNYVV) is driven by a set of three movement proteins--P42, P13, and P15--organized into a triple gene block (TGB) on viral RNA 2. The first TGB protein, P42, has been fused to the green fluorescent protein (GFP) and fusion proteins between P42 and GFP were expressed from a BNYVV RNA 3-based replicon during virus infection. GFP-P42, in which the GFP was fused to the P42 N terminus, could drive viral cell-to-cell movement when the copy of the P42 gene on RNA 2 was disabled but the C-terminal fusion P42-GFP could not. Confocal microscopy of epidermal cells of Chenopodium quinoa near the leading edge of the infection revealed that GFP-P42 localized to punctate bodies apposed to the cell wall whereas free GFP, expressed from the replicon, was distributed uniformly throughout the cytoplasm. The punctate bodies sometimes appeared to traverse the cell wall or to form pairs of disconnected bodies on each side. The punctate bodies co-localized with callose, indicating that they are associated with plasmodesmata-rich regions such as pit fields. Point mutations in P42 that inhibited its ability to drive cell-to-cell movement also inhibited GFP-P42 punctate body formation. GFP-P42 punctate body formation was dependent on expression of P13 and P15 during the infection, indicating that these proteins act together or sequentially to localize P42 to the plasmodesmata.  相似文献   

2.
1.5-Hydroxytryptamine (10 M) enhanced ionic current mediated through the wild-type P2X2 receptor/channel expressed in Xenopus oocytes.2.5-Hydroxytryptamine (10 M) inhibited a current mediated through P2X2 receptor/channel mutants when Thr330 or Asn333 was replaced with Ile (T330I and N333I).3.Our results suggest that neutralization of Thr330 or Asn333 exposes a high-affinity, inhibitory binding site for 5-hydroxytryptamine. This implies that 5-hydroxytryptamine interacts with the P2X2 receptor/channel at their channel pores.  相似文献   

3.
A number of secY mutants of Escherichia coli showing protein export defects were isolated by a combination of localized mutagenesis and secA-lacZ screening. Most of them were cold sensitive and contained single base substitutions in secY leading to amino acid replacements in various parts of the SecY protein, mainly in the cytoplasmic and the transmembrane domains. A temperature-sensitive mutant with an export defect had the same base substitution as secY24, which was characterized previously. Many cold-sensitive secY mutants exhibited rapid responses to temperature lowering but their apparent defects varied at the permissive temperature. Others exhibited delayed responses to the temperature shift. Some secY mutations, including secY39, interfered with protein export when expressed from a multicopy plasmid, even in the presence of wild-type secY on the chromosome. Such dominant negative mutations, including secY –d l, which was studied previously, were all located in either cytoplasmic domain 5 or 6, which is consistent with our previous proposal that the C-terminal region of SecY is important for its function as a protein translocator. We also studied the phenotypes of strains in which one of the secY mutations was combined with the components of the SecD operon. Overexpression of SecD partially suppressed the secY39 mutation, while overexpression of secF exacerbated the export defects of secY122 and secY125 mutations. Overexpression of yajC, located within the SecD operon, suppressed sec Y –d1. Although yajC itself proved to be dispensable, its disruption impaired the growth of the secY39 mutant at 42°C. These observations suggest that SecY interacts with SecD, SecF, and the product of yajC.  相似文献   

4.
5.
    
We used quantitative complementation assays to characterize individual DNA polymerase (Pol) mutants for their ability to function in DNA replication and DNA repair. We also describe a screen for detecting imitator activity of DNA polymerase mutants. By using these bioassays, together with DNA polymerase activity gels, we characterized 15 new DNA polymerase mutants that display a wide spectrum of phenotypes. Most of these mutants are generally defective in their ability to synthesize DNA. However, two of our Pol mutants show more complex phenotypes: they are able to function in DNA repair but unable to participate in DNA replication. One of our mutants displays imitator activity in vivo. Our work provides a model to study mutant mammalian enzymes inEscherichia coli with phenotypes that are otherwise difficult to assess.  相似文献   

6.
Summary The movement of the outer peristome teeth of the sporangium of the moss,Rhacopilum tomentosum, is driven by different swelling velocities of the outer (plates) and inner (ridges) wall thickenings due to suberin-like substances and wax-lamellae which enclose the ridges. The plates do not contain suberin-like material. The hydrophobic materials are secreted with the participation of smooth tubular ER.—When the local wall thickenings of the peristome teeth are formed, microtubules are concentrated along the plasmalemma in the thickening regions. They run along the crest of the developing plates (i.e., normal to the long axis of the tooth) and parallel to the long axis in the ridge cells. The wall thickenings are composed of layers of parallel microfibrils and of matrix substances. With a few exceptions microtubules and microfibrils have different directions. Golgi vesicles, subsurface ER and coated regions in the plasmalemma also are involved in cell wall formation. The function of the microtubules is discussed.  相似文献   

7.
Summary Sodium lactobionate is not utilized as a carbon source byEscherichia coli because it is only poorly bound and hydrolyzed by -galactosidase and it does not induce the formation of the enzyme. However, treatment with N-methyl-N-nitro-N-nitrosoguanidine produced 32 independent mutants able to grow on lactobionate. Most of the mutants formed -galactosidase constitutively, 29 of them having mutations in the regulatory gene and one possibly in the operator. In addition, the mutants possessed quantitatively—or qualitatively—altered -galactosidase. In 28 mutants the -galactosidase activity was 1.5 to 4.5 times that of the wild-type. The enzymes of these mutants were unaltered in thermostability and substrate binding. One enzyme that was titrated immunologically possessed a molecular activity indentical with the wild-type enzyme. These mutants appear to contain extra copies of the gene for -galactosidase. The spontaneous mutation rate to constitutivity was 6.3x10-3 and to the formation of apparently extra genes, 9.2x10-3.The -galactosidases of three mutants were qualitatively changed as judged from their increased thermosensitivity, altered substrate-binding constants and greatly increased ability to hydrolyze lactose and lactobionate. Affinity for 0-nitrophenyl--galactoside and galactose was increased by the mutations while that for lactose was decreased; maximum velocities for the hydrolysis of 0-nitrophenyl--galactoside were also decreased. Relative to their rates of hydrolysis of 0-nitrophenyl--galactoside, these altered enzymes hydrolyzed lactose at 6 to 8 times, and lactobionate up to 23 times, the rate given by the normal enzyme. The mutations appear to increase the hydrophobic nature of the enzyme near the aglycon binding site and facilitate the hydrolysis of more hydrophilic galactosides. The lactobionic acid positive character could be transferred to other bacteria by sexual conjugation when the enzyme changes were qualitative, but not when they were quantitative.  相似文献   

8.
Replication rate and replicon sizes in chromosomal DNA of in vitro cultured diploid D. melanogaster cells were determined using autoradiography of 3H-thymidine labeled DNA. Synthesis of DNA in euchromatic and heterochromatic regions of Drosophila diploid cells occurs at different periods of the S phase which lasts 10 h. During the first 4 h the synthesis is observed only in euchromatic regions. The heterochromatic synthesis starts shortly before the synthesis in euchromatic regions is completed and lasts for 6 h until the end of the S phase. The cells were synchronized by 5fluorodeoxyuridine which blocked the diploid cell DNA synthesis. Synthesis was found to start simultaneously in most euchromatic replicons. In the majority of the replicons the synthesis started at a single point and proceeded bidirectionally. The average rate of DNA synthesis per fork was 12.5 m/h (38 kb). The mean distance between the middle points of adjacent labeled regions was 70 m (210 kb). The size of most replicons ranged from 40 to 120 m. — These estimates do not apply to the heterochromatic portions of the D. melanogaster genome since the measurements have been carried out on DNA preparations obtained during the first 2 h of the S phase. — On the average, a replicon can consist of 7 chromomeres since the size of a replicon in diploid cell chromosomal DNA and DNA length of a polytene chromomere average 210 and 30 kb, respectively.  相似文献   

9.
Saccharomycodes ludwigii, supposed to be petite-negative, gave rise to respiration-deficient mutants when acriflavine and ultraviolet irradiation, respectively, were applied to this yeast, strain IFO 1194. The frequency of such mutants was very low as compared with that in Saccharomyces cerevisiae and other petite-positive yeasts. Cytochrome composition was characterized by spectrophotometry at the temperature of liquid nitrogen. The respiratory mutants examined contained cytochrome c unaltered in quality and quantity. Cytochrome b was often present only in small amounts though never absent, while cytochrome a+a3 was either present or absent. The respiratory mutants could form zygotes after conjugation with a wild-type culture of opposite mating type ( vs. a). The hybridization and segregation analysis of spore tetrads showed the inheritance of respiratory mutant character to be either Mendelian or non-Mendelian and similar to that of pet (nuclear) and rho- (cytoplasmic) mutants, respectively, in Saccharomyces cerevisiae.  相似文献   

10.
The effect was studied of a low dose of-ray preexposure on the frequency and molecular spectrum of radiation-induced mutations at the hprt locus in a human T-cell leukemia line. When the cells were preexposed to 0.01 Gy of-rays, the yield of mutations induced by a subsequent 2-Gy challenge dose was reduced by 60%, compared with the 2 Gy of irradiation alone. The data of Southern blot analysis showed that 47% of the mutants induced by 2 Gy in the cells without low-dose preexposure were of the deletion or rearranged mutations type. In contrast, in the low-dose radioadapted cells the proportion of this type of 2-Gy-induced mutations decreased to 28%. This is close to the control level (22%) of spontaneous mutations. Our results confirm that a low dose of-ray preexposure leads to a decreased susceptibility to gene deletions and rearrangements after high-dose irradiation.  相似文献   

11.
Summary Four genes concerned with the resistance of wild-type Micrococcus radiodurans to the lethal action of mitomycin-C (MTC), mtcA, mtcB, uvsA and uvsB, have been identified by isolating mutants sensitive to MTC.Two strains of M. radiodurans, 302 and 262 carrying mutations in mtcA and mtcB respectively, are between forty and sixty times as sensitive as the wild-type to MTC, only slightly more sensitive than the wild-type to ionizing () radiation and have the same resistance as the wild-type to ultraviolet (u.v.) radiation. Strain 302 can be transformed at a high frequency to wild-type resistance to MTC with DNA from strain 262, and vice versa, indicating that mtcA and mtcB have different genetic locations.Two further strains of M. radiodurans, 303 and 263 having mutations in uvsA and uvsB respectively are only from four to eight times as sensitive as the wild-type to MTC, seven to thirteen times as sensitive to -radiation but between twenty to thirty-three times as sensitive to u.v. radiation. Strain 303 can be transformed with DNA from strain 263, or vice versa, to wild-type resistance to u.v. radiation, implying that uvsA and uvsB also have different genetic locations. M. radiodurans strain 301 which is mutant in both mtcA and uvsA, and strain 261 which is mutant in mtcB and uvsB are twenty to forty times as sensitive as the wild-type to both MTC and u.v. radiation and seven to ten times as sensitive to radiation. Neither mtcA and uvsA nor mtcB and uvsB are closely linked.None of the mutant strains is deficient in recombination, as measured by transformation. The repair of MTC-induced DNA damage in M. radiodurans must be different from that described for Escherichia coli.  相似文献   

12.
Summary Tn17221K, a derivative of transposon Tn1721 lacking one terminal inverted repeat (IR) and conferring kanamycin resistance, promotes transposition of the resistance marker to a target replicon at about 100-fold lower frequency than the wild-type element. A study involving restriction analysis of 16 independent Tn17221K-mediated events led to the following results: (i) Tn17221K mediates fusions of the donor (pRU506) and target (RSF1010) replicons; the fused entities are non-permuted. (ii) Tn17221K promotes insertions of donor DNA at many different sites in the target replicon. (iii) The analyzed fusion plasmids contain the entire target and various lengths of donor DNA. Eleven products contain the entire donor plasmid plus a duplication of the IR (class A), whereas five products contain only portions adjacent to the single IR (class B). (iv) In each case the two replicons are joined at (or very close to) the single IR. The second junction is located shortly beyond the duplicated IR in class A and at different sites within the donor plasmid in class B. These results are interpreted in terms of asymmetric replicative transposition.  相似文献   

13.
Cytoplasmic membrane vesicles were prepared by a lysozyme-salt treatment from Arthrobacter P1 grown on methylamine as the carbon and energy source. In the presence of an ascorbate-phenazine methosulphate electron donor system, these vesicles accumulated methylamine in unmodified form by an inducible transport system. This system has a high affinity for methylamine (Kapp=20–25 M). The effect of the ionophores valinomycin and nigericin combined with membrane potential () and pH-gradient (pH) measurements demonstrated that methylamine uptake is electrogenic and driven by the . Optimal activity is observed at pH 6.5 and 30°C. Methylamine uptake was not affected by the presence of ammonium ions but was inhibited by the primary amines ethylamine (competitively), propylamine, butylamine and benzylamine. In addition, formaldehyde and acetate, at a concentration of 1 mM, inhibited methylamine uptake almost completely. These compounds were shown to be non-competitive inhibitors. A strong inhibition observed in the presence of plumbagin could be relieved by addition of dithiothreitol. This indicates that the oxidation-reduction state of, probably, carrier dithiol-disulfide-groups is an important factor in methylamine translocation in Arthrobacter P1.  相似文献   

14.
A small open reading frame (ORF), pipo, overlaps with the P3 coding region of the potyviral polyprotein ORF. Previous evidence suggested a requirement for pipo for efficient viral cell-to-cell movement. Here, we provide immunoblotting evidence that the protein PIPO is expressed as a trans-frame protein consisting of the amino-terminal half of P3 fused to PIPO (P3N-PIPO). P3N-PIPO of Turnip mosaic virus (TuMV) fused to GFP facilitates its own cell-to-cell movement. Using a yeast two-hybrid screen, co-immunoprecipitation assays, and bimolecular fluorescence complementation (BiFC) assays, we found that P3N-PIPO interacts with host protein PCaP1, a cation-binding protein that attaches to the plasma membrane via myristoylation. BiFC revealed that it is the PIPO domain of P3N-PIPO that binds PCaP1 and that myristoylation of PCaP1 is unnecessary for interaction with P3N-PIPO. In PCaP1 knockout mutants (pcap1) of Arabidopsis, accumulation of TuMV harboring a GFP gene (TuMV-GFP) was drastically reduced relative to the virus level in wild-type plants, only small localized spots of GFP were visible, and the plants showed few symptoms. In contrast, TuMV-GFP infection in wild-type Arabidopsis yielded large green fluorescent patches, and caused severe stunting. However, viral RNA accumulated to high level in protoplasts from pcap1 plants indicating that PCaP1 is not required for TuMV RNA synthesis. In contrast to TuMV, the tobamovirus Oilseed rape mosaic virus did not require PCaP1 to infect Arabidopsis plants. We conclude that potyviral P3N-PIPO interacts specifically with the host plasma membrane protein PCaP1 to participate in cell-to-cell movement. We speculate that PCaP1 links a complex of viral proteins and genomic RNA to the plasma membrane by binding P3N-PIPO, enabling localization to the plasmodesmata and cell-to-cell movement. The PCaP1 knockout may contribute to a new strategy for recessive resistance to potyviruses.  相似文献   

15.
The Photosystem II (PSII) core antenna chlorophyll a-binding protein, CP47, contains six membrane-spanning -helices separated by five hydrophilic loops: A–E. To identify important hydrophilic cytosolic regions, oligonucleotide-directed mutagenesis was employed to introduce short segment deletions into loops B and D, and the C-terminal domain. Four strains carrying deletions of between three and five residues were created in loop B. Two strains, with deletions adjacent to helices II and III, did not assemble PSII; however, the mutants (F123–D125) and (R127–S131) remained photoautotrophic with near wild-type levels of assembled reaction centers. In contrast, all deletions introduced into loop D, connecting helices IV and V, failed to assemble significant levels of PSII and were obligate photoheterotrophic mutants. However, deletions in the C-terminal domain did not prevent the assembly of PSII reaction centers although the mutant (S471–T473), with a deletion adjacent to helix VI, exhibited retarded QA oxidation kinetics and the PSII-specific herbicide, atrazine, bound less tightly in the (S471–T473) and (F475–D477) strains. Deletions in the C-terminal domain also created mutants with large protein aggregates that were recognized by an antibody raised against the PSII reaction center D1 protein. Low-temperature fluorescence emission spectra of photoautotrophic strains carrying deletions in either the C-terminal domain or loop B did not provide evidence for impaired energy transfer from the phycobilisomes to the PSII reaction center. The data therefore suggest an important structural role for loop D in the assembly of PSII and a potential interaction between the C-terminal domain of CP47 and the PSII reaction center that, when perturbed, results in photoinduced protein aggregates involving the D1 protein.  相似文献   

16.
Mutants resistant to nikkomycin, an inhibitor of chitin biosynthesis, were isolated after exposure of wild-type spores of the fungus Phycomyces blakesleeanus to N-methyl-N-nitro-N-nitrosoguanidine. Genetic analysis revealed that nikkomycin resistance was due to mutations in a single gene, chsA. Mutants and wild type grew equally well in the absence of nikkomycin. In contrast to the wild type, whose spore germination and mycelial growth were inhibited by 5 M nikkomycin, chsA mutants grew reasonably well in the presence of 50 M nikkomycin. Chitin synthesis in vivo was much less affected by the drug in the mutants than in the wild type. Resistance was not due to impaired uptake or detoxification of the drug. Analysis of the kinetics of chitin synthesis in vitro showed that the mutants had a decreased Ka for the allosteric activator, N-acetylglucosamine, and gross alterations in nikkomycin inhibition kinetics. These results indicate that chsA is the structural gene for chitin synthetase, or at least for the polypeptide that bears the catalytic and allosteric sites.  相似文献   

17.
Summary The growth factor receptor-bound protein-2 (Grb2) is an adaptor protein that mediates signal transduction pathways. Chemical shift assignments were obtained for the SH2 domain of Grb2 by heteronuclear NMR spectroscopy, employing the uniformly 13C-/15N-enriched protein as well as the protein containing selectively 15N-enriched amino acids. Using the Chemical Shift Index (CSI) method, the chemical shift indices of four nuclei, 1H, 13C, 13C and 13CO, were used to derive the secondary structure of the protein. Nuclear Overhauser enhancements (NOEs) were then employed to confirm the secondary structure. The CSI results were compared to the secondary structural elements predicted for the Grb2 SH2 domain from a sequence alignment [Lee et al. (1994) Structure, 2, 423–438]. The core structure of the SH2 domain contains an antiparallel -sheet and two -helices. In general, the secondary structural elements determined from the CSI method agree well with those predicted from the sequence alignment.Abbreviations crk viral p47gag-crk - EGF epidermal growth factor - GAP GTPase-activating protein - PI3K phosphatidylinositol-3-kinase - PLC- phospholipase-C-, shc, src homologous and collagen - src sarcoma family of nonreceptor tyrosine kinase  相似文献   

18.
Summary Mutagenic action of 60Co -rays on extracellular phages red + and red1 13 after irradiation in 4% nutrient broth in the absence or in the presence of 0.1 M cysteamine or in dried samples was studied. The yield of c mutations was almost independent of the repair genotype of the host cells (uvrA6, polA1, recA13, lexA102, uvrE502, uvrD3 or xthA9), of the phage Red function and of the conditions of -irradiation and was 1·10-12 per base pair and 1 rad. When the SOS-repair system of the host cells was induced by moderate UV irradiation, the yield of c-mutations was drastically enhanced in phage irradiated in broth, but not in phage irradiated in the dried state. These data allow us to suppose that the direct action of -rays induces, in phage DNA, premutational lesions that are fixed into mutations by replication. On the other hand after -irradiation in broth, when indirect radiation effects are only partially suppressed, about 85% of premutational lesions are converted into mutations by means of the inducible, errorprone SOS-repair system.  相似文献   

19.
Summary Z mutants of bacteriophage P2 form clear plaques and are unable to give rise to stable lysogens in Escherichia coli C. To study the function of the Z gene in lysogenization by P2, temperature-sensitive mutants were isolated. Those that were classified as Z mutants by complementation were all cold-sensitive (cs); they were unable to form lysogens at 30° C, but had wild type phenotype at 42° C. When lysogens carrying such mutants, prepared at 42° C, were shifted to the lower temperature, the bacteria continued to multiply at the normal rate until they reached concentrations of about 5 × 107 per ml, at which point the viable titer began to decrease. Inactivation of the bacteria at even lower concentrations occurred if they were transferred to medium taken from overnight cultures of the same strain, suggesting that they were sensitive to some material that had accumulated in the culture medium.The lethal material was produced not only by csZ lysogens, but by all derivatives of Escherichia coli C tested, including non-lysogens, and at both 30° C and 42° C. Only csZ lysogens were sensitive to it, however, and only at the lower temperature. A preliminary characterization of the material indicates that it is heat-stable, of low molecular weight and does not adsorb to activated charcoal.This work was supported by Research Grant 72 from the Swedish Medical Research Council  相似文献   

20.
This study reports a novel splice variant form of the voltage-dependent calcium channel 2 subunit (2g). This variant is composed of the conserved amino-terminal sequences of the 2a subunit, but lacks the -subunit interaction domain (BID), which is thought essential for interactions with the 1 subunit. Gene structure analysis revealed that this gene was composed of 13 translated exons spread over 107 kb of the genome. The gene structure of the 2 subunit was similar in exon-intron organization to the murine 3 and human 4 subunits. Electrophysiological evaluation revealed that 2a and 2g affected channel properties in different ways. The 2a subunit increased the peak amplitude, but failed to increase channel inactivation, while 2g had no significant effects on either the peak current amplitude or channel inactivation. Other subunits, such as 3 and 4, significantly increased the peak current and accelerated current inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号