首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
Distribution of T-DNA carrying a Ds element on rice chromosomes   总被引:3,自引:0,他引:3  
Rice is one of the most important crops in the world, and is widely studied as a model for cereal ge-nomics because of its small genome size (about 430 Mbp), and its colinearity at the sequence level with limited regions of other cereal genomes. In addition, there are a large number of rice databases document-ing molecular markers, genome sequences, EST se-quences and trait mutants[1—4]. Functional genomic studies of rice are increasing with the availability of the complete genome sequence. …  相似文献   

2.
T-DNA integration is a key step in the process of plant transformation, which is proven to be important for analyzing T-DNA integration mechanism. The structures of T-DNA right borders inserted into the rice (Oryza sativa L.) genome and their flanking sequences were analyzed. It was found that the integrated ends of the T-DNA right border occurred mainly on five nucleotides "TGACA" in inverse repeat (IR)sequence of 25 bp, especially on the third base "A". However, the integrated ends would sometimes lie inward of the IR sequence, which caused the IR sequence to be lost completely. Sometimes the right integrated ends appeared on the vector sequences rightward of the T-DNA right border, which made the TDNA, carrying vector sequences, integrated into the rice genome. These results seemingly suggest that the IR sequence of the right border plays an important role in the process of T-DNA integration into the rice genome, but is not an essential element. The appearance of vector sequences neighboring the T-DNA right border suggested that before being transferred into the plant cell from Agrobacterium, the entire T-DNA possibly began from the left border in synthesis and then read through at the right border. Several nucleotides in the T-DNA right border homologous with plant DNA and filler DNAs were frequently discovered in the integrated position ofT-DNA. Some small regions in the right border could match with the plant sequence, or form better matches, accompanied by the occurrence of filler DNA, through mutual twisting, and then the TDNA was integrated into plant chromosome through a partially homologous recombination mechanism. The appearance of filler DNA would facilitate T-DNA integration. The fragments flanking the T-DNA right border in transformed rice plants could derive from different parts of the inner T-DNA region; that is, disruption and recombination could occur at arbitrary positions in the entire T-DNA, in which the homologous area was comparatively easier to be disrupted. The structure of flanking sequences of T-DNA integrated in the rice chromosome presented various complexities. These complexities were probably a result of different patterns of recombination in the integrating process. Some types of possible integrating mechanism are detailed.  相似文献   

3.
A two-element Activator/Dissociation (Ac/Ds) gene trap system was successfully established in rice (Oryza sativa ssp. japonica cv. Nipponbare) to generate a collection of stable, unlinked and single-copy Ds transposants. The germinal transposition frequency of Ds was estimated as an average of 51% by analyzing 4413 families. Study of Ds transposition pattern in siblings revealed that 79% had at least two different insertions, suggesting late transposition during rice development. Analysis of 2057 Ds flanking sequences showed that 88% of them were unique, whereas the rest within T-DNA. The insertions were distributed randomly throughout the genome; however, there was a bias toward chromosomes 4 and 7, which had two times as many insertions as that expected. A hot spot for Ds insertions was identified on chromosome 7 within a 40-kbp region. One-third of Ds flanking sequences was homologous to either proteins or rice expressed sequence tags (ESTs), confirming a preference for Ds transposition into coding regions. Analysis of 200 Ds lines on chromosome 1 revealed that 72% insertions were found in genic region. Anchoring of more than 800 insertions to yeast artificial chromosome (YAC)-based EST map showed that Ds transposes preferentially into regions rich in expressed sequences. High germinal transposition frequency and independent transpositions among siblings show that the efficiency of this system is suitable for large-scale transposon mutagenesis in rice.  相似文献   

4.
利用本实验室构建的转Ac(Ac TPase)及Ds(Dissociation)的水稻(Oryza sativa L.)转化群体,配置了Ae×Ds的杂交组合354个。检测了转基因植株的T-DNA插入位点右侧旁邻序列,研究了Ac/Ds转座系统在水稻转化群体中的转座活性。结果表明,有些转化植株T-DNA插入位点相同或相距很近,插入位点互不相同的占65.4%。检测到T-DNA可插入到编码蛋白的基因中。在Ac×Ds的F2代中,Ds因子的转座频率为22.7%。对Ac×Ds杂交子代中Ds因子旁侧序列的分析,进一步表明了Ds因子在水稻基因组中的转座活性,除了从原插入位点解离并转座到新的位点之外,还有复制——转座和小完全切离等现象。获得的旁侧序列中,有些序列与GenBank中的数据没有同源性,目前有2个DNA片段在GenBank登录。探讨了构建转座子水稻突变体库进行水稻功能基因组学研究的策略。  相似文献   

5.
Generation and flanking sequence analysis of a rice T-DNA tagged population   总被引:26,自引:0,他引:26  
Insertional mutagenesis provides a rapid way to clone a mutated gene. Transfer DNA (T-DNA) of Agrobacterium tumefaciens has been proven to be a successful tool for gene discovery in Arabidopsis and rice (Oryza sativa L. ssp. japonica). Here, we report the generation of 5,200 independent T-DNA tagged rice lines. The T-DNA insertion pattern in the rice genome was investigated, and an initial database was constructed based on T-DNA flanking sequences amplified from randomly selected T-DNA tagged rice lines using Thermal Asymmetric Interlaced PCR (TAIL-PCR). Of 361 T-DNA flanking sequences, 92 showed long T-DNA integration (T-DNA together with non-T-DNA). Another 55 sequences showed complex integration of T-DNA into the rice genome. Besides direct integration, filler sequences and microhomology (one to several nucleotides of homology) were observed between the T-DNA right border and other portions of the vector pCAMBIA1301 in transgenic rice. Preferential insertion of T-DNA into protein-coding regions of the rice genome was detected. Insertion sites mapped onto rice chromosomes were scattered in the genome. Some phenotypic mutants were observed in the T1 generation of the T-DNA tagged plants. Our mutant population will be useful for studying T-DNA integration patterns and for analyzing gene function in rice.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by D. Mackill  相似文献   

6.
We isolated 13 804 T-DNA flanking sequence tags (FSTs) from a T-DNA insertion library of rice. A comprehensive analysis of the 13 804 FSTs revealed a number of features demonstrating a highly non-random distribution of the T-DNA insertions in the rice genome: T-DNA insertions were biased towards large chromosomes, not only in the absolute number of insertions but also in the relative density; within chromosomes the insertions occurred more densely in the distal ends, and less densely in the centromeric regions; the distribution of the T-DNA insertions was highly correlated with that of full-length cDNAs, but the correlations were highly heterogeneous among the chromosomes; T-DNA insertions strongly disfavored transposable element (TE)-related sequences, but favored genic sequences with a strong bias toward the 5' upstream and 3' downstream regions of the genes; T-DNA insertions preferentially occurred among the various classes of functional genes, such that the numbers of insertions were in excess in certain functional categories but were deficient in other categories. The analysis of DNA sequence compositions around the T-DNA insertion sites also revealed several prominent features, including an elevated bendability from -200 to 200 bp relative to the insertion sites, an inverse relationship between the GC and TA skews, and reversed GC and TA skews in sequences upstream and downstream of the insertion sites, with both GC and TA skews equal to zero at the insertion sites. It was estimated that 365 380 insertions are needed to saturate the genome with P = 0.95, and that the 45 441 FSTs that have been isolated so far by various groups tagged 14 287 of the 42 653 non-TE related genes.  相似文献   

7.
8.
After Agrobacterium-mediated plant transformation, multiple T-DNAs frequently integrate at the same position in the plant genome, resulting in the formation of inverted and direct repeats. Because these inverted repeats cannot be amplified and analyzed by PCR, Arabidopsis root cells were co-transformed with two different T-DNAs with distinct sequences adjacent to the T-DNA borders. Nine direct or inverted T-DNA border junctions were analyzed at the sequence level. Precise end-to-end fusions were found between two right border ends, whereas imprecise fusions and filler DNA were present in T-DNA linkages containing a left border end. The results suggest that end-to-end ligation of double-stranded T-DNAs occurs especially between right T-DNA ends and that illegitimate recombination on the basis of microhomology, deletions, repair activities and insertions of filler DNA is involved in the formation of left border T-DNA junctions. Therefore, a similar illegitimate recombination mechanism is proposed that is involved in the formation of complex T-DNA inserts as well as in the integration of the T-DNA in the plant genome.  相似文献   

9.
10.
The Dissociation transposable element (Ds) of maize containing NPTII was introduced into the diploid potato (Solanum tuberosum) clone J91-6400-A16 through Agrobacterium tumefaciens mediated transformation. Genomic DNA sequences flanking the T-DNAs from 312 transformants were obtained with inverse polymerase chain reaction or plasmid rescue techniques and used as probes for RFLP linkage analysis. The RFLP map location of 60 T-DNAs carrying Ds-NPTII was determined. The T-DNA distribution per chromosome and the relative distance between them appeared to be random. All 12 chromosomes have been covered with Ds-containing T-DNAs, potentially enabling tagging of any gene in the potato genome. The T-DNA insertions of two transformants, BET92-Ds-A16-259 and BET92-Ds-A16-416, were linked in repulsion to the position of the resistance gene R1 against Phytophthora infestans. After crossing BET92-Ds-A16-416 with a susceptible parent, 4 desired recombinants (Ds carrying T-DNA linked in coupling phase with the R1 gene) were discovered. These will be used for tagging the R1 gene. The efficiency of the pathway from the introduction to localization of T-DNAs is discussed. Key words : Solanum tuberosum, Phytophthora infestans, Ds element, transposon tagging, R genes, euchromatin.  相似文献   

11.
More than 10 000 transposon-tagged lines were constructed by using the Activator (Ac)/Dissociation (Ds) system in order to collect insertional mutants as a useful resource for functional genomics of Arabidopsis. The flanking sequences of the Ds element in the 11 800 independent lines were determined by high-throughput analysis using a semi-automated method. The sequence data allowed us to map the unique insertion site on the Arabidopsis genome in each line. The Ds element of 7566 lines is inserted in or close to coding regions, potentially affecting the function of 5031 of 25 000 Arabidopsis genes. Half of the lines have Ds insertions on chromosome 1 (Chr. 1), in which donor lines have a donor site. In the other half, the Ds insertions are distributed throughout the other four chromosomes. The intrachromosomal distribution of Ds insertions varies with the donor lines. We found that there are hot spots for Ds transposition near the ends of every chromosome, and we found some statistical preference for Ds insertion targets at the nucleotide level. On the basis of systematic analysis of the Ds insertion sites in the 11 800 lines, we propose the use of Ds-tagged lines with a single insertion in annotated genes for systematic analysis of phenotypes (phenome analysis) in functional genomics. We have opened a searchable database of the insertion-site sequences and mutated genes (http://rarge.gsc.riken.go.jp/) and are depositing these lines in the RIKEN BioResource Center as available resources (http://www.brc.riken.go.jp/Eng/).  相似文献   

12.
Distribution and characterization of over 1000 T-DNA tags in rice genome   总被引:22,自引:0,他引:22  
We generated T-DNA insertions throughout the rice genome for saturation mutagenesis. More than 1,000 flanking sequences were mapped on 12 rice chromosomes. Our results showed that T-DNA tags were not randomly spread on rice chromosomes and were preferentially inserted in gene-rich regions. Few insertions (2.4%) were found in repetitive regions. T-DNA insertions in genic (58.1%) and intergenic regions (41.9%) showed a good correlation with the predicted size distribution of these sequences in the rice genome. Whereas, obvious biases were found for the insertions in the 5'- and 3'-regulatory regions outside the coding regions both at 500-bp size and in introns rather than in exons. Such distribution patterns and biases for T-DNA integration in rice are similar to that of the previous report in Arabidopsis, which may result from T-DNA integration mechanism itself. Rice will require approximately the same number of T-DNA insertions for saturation mutagenesis as will Arabidopsis. A database of the T-DNA insertion sites in rice is publicly available at our web site (http://www.genomics.zju.edu.cn/ricetdna).  相似文献   

13.
A systematic analysis of T-DNA insertion events in Magnaporthe oryzae   总被引:2,自引:0,他引:2  
We describe here the analysis of random T-DNA insertions that were generated as part of a large-scale insertional mutagenesis project for Magnaporthe oryzae. Chromosomal regions flanking T-DNA insertions were rescued by inverse PCR, sequenced and used to search the M. oryzae genome assembly. Among the 175 insertions for which at least one flank was rescued, 137 had integrated in single-copy regions of the genome, 17 were in repeated sequences, one had no match to the genome, and the remainder were unassigned due to illegitimate T-DNA integration events. These included in order of abundance: head-to-tail tandem insertions, right border excision failures, left border excision failures and insertion of one T-DNA into another. The left borders of the T-DNA were frequently truncated and inserted in sequences with micro-homology to the left terminus. By contrast the right borders were less prone to degradation and appeared to have been integrated in a homology-independent manner. Gross genome rearrangements rarely occurred when the T-DNAs integrated in single-copy regions, although most insertions did cause small deletions at the target site. Significant insertion bias was detected, with promoters receiving two times more T-DNA hits than expected, and open reading frames receiving three times fewer. In addition, we found that the distribution of T-DNA inserts among the M. oryzae chromosomes was not random. The implications of these findings with regard to saturation mutagenesis of the M. oryzae genome are discussed.  相似文献   

14.
About 25,000 rice T-DNA insertional mutant lines were generated using the vector pCAS04 which has both promoter-trapping and activation-tagging function. Southern blot analysis revealed that about 40% of these mutants were single copy integration and the average T-DNA insertion number was 2.28. By extensive phenotyping in the field, quite a number of agronomically important mutants were obtained. Histochemical GUS assay with 4,310 primary mutants revealed that the GUS-staining frequency was higher than that of the previous reports in various tissues and especially high in flowers. The T-DNA flanking sequences of some mutants were isolated and the T-DNA insertion sites were mapped to the rice genome. The flanking sequence analysis demonstrated the different integration pattern of the right border and left border into rice genome. Compared with Arabidopsis and poplar, it is much varied in the T-DNA border junctions in rice.  相似文献   

15.
An S  Park S  Jeong DH  Lee DY  Kang HG  Yu JH  Hur J  Kim SR  Kim YH  Lee M  Han S  Kim SJ  Yang J  Kim E  Wi SJ  Chung HS  Hong JP  Choe V  Lee HK  Choi JH  Nam J  Kim SR  Park PB  Park KY  Kim WT  Choe S  Lee CB  An G 《Plant physiology》2003,133(4):2040-2047
We analyzed 6749 lines tagged by the gene trap vector pGA2707. This resulted in the isolation of 3793 genomic sequences flanking the T-DNA. Among the insertions, 1846 T-DNAs were integrated into genic regions, and 1864 were located in intergenic regions. Frequencies were also higher at the beginning and end of the coding regions and upstream near the ATG start codon. The overall GC content at the insertion sites was close to that measured from the entire rice (Oryza sativa) genome. Functional classification of these 1846 tagged genes showed a distribution similar to that observed for all the genes in the rice chromosomes. This indicates that T-DNA insertion is not biased toward a particular class of genes. There were 764, 327, and 346 T-DNA insertions in chromosomes 1, 4 and 10, respectively. Insertions were not evenly distributed; frequencies were higher at the ends of the chromosomes and lower near the centromere. At certain sites, the frequency was higher than in the surrounding regions. This sequence database will be valuable in identifying knockout mutants for elucidating gene function in rice. This resource is available to the scientific community at http://www.postech.ac.kr/life/pfg/risd.  相似文献   

16.
利用本实验室构建的转Ac(AcTPase)及Ds(Dissociation)的水稻(Oryza sativa L.)转化群体,配置了Ac×Ds的杂交组合354个.检测了转基因植株的T-DNA插入位点右侧旁邻序列,研究了Ac/Ds转座系统在水稻转化群体中的转座活性.结果表明,有些转化植株T-DNA插入位点相同或相距很近,插入位点互不相同的占65.4%.检测到T-DNA可插入到编码蛋白的基因中.在Ac×Ds的F2代中,Ds因子的转座频率为22.7%.对Ac×Ds杂交子代中Ds因子旁侧序列的分析,进一步表明了Ds因子在水稻基因组中的转座活性,除了从原插入位点解离并转座到新的位点之外,还有复制--转座和不完全切离等现象.获得的旁侧序列中,有些序列与GenBank中的数据没有同源性,目前有2个DNA片段在GenBank登录.探讨了构建转座子水稻突变体库进行水稻功能基因组学研究的策略.  相似文献   

17.
摘要:【目的】研究灰葡萄孢菌(Botrytis cinerea)基因组中T-DNA插入位点的整合模式特征。【方法】利用农杆菌(Agrobactirium tumfacience)介导法构建灰葡萄孢菌T-DNA插入突变体库。利用热不对称交错PCR(TAIL-PCR)技术对转化子中T-DNA的旁侧序列进行扩增和克隆,对获得的旁侧序列进行比对分析。【结果】T-DNA插入在灰葡萄孢菌基因组非编码区的占69%,插入在外显子的占30%。T-DNA在插入的过程中发生了碱基缺失、增加等重组现象,其中左边界(left border,LB)整合到基因组碱基缺失较少,有的保持完整,而右边界(right border,RB)及其近邻的T-DNA区域缺失碱基较多。T-DNA的插入位点还发现有额外的序列插入。【结论】对灰葡萄孢菌中插入T-DNA的整合模式的分析为开展该菌的功能基因组学奠定了基础。  相似文献   

18.
Eight hundred and fifty Arabidopsis thaliana T-DNA insertion lines have been selected on a phenotypic basis. The T-DNA flanking sequences (FST) have been isolated using a PCR amplification procedure and sequenced. Seven hundred plant DNA sequences have been obtained revealing a T-DNA insertion in, or in the immediate vicinity of 482 annotated genes. Limited deletions of plant DNA have been observed at the site of insertion of T-DNA as well as in its left (LB) and right (RB) T-DNA signal sequences. The distribution of the T-DNA insertions along the chromosomes shows that they are essentially absent from the centrometric and pericentrometric regions.  相似文献   

19.
T-DNA integration patterns in 49 transgenic grapevines produced via Agrobacterium-mediated transformation were analyzed. Inverse PCR (iPCR) was performed to identify T-DNA/plant junctions. Sequence comparison revealed several deletions in the T-DNA right border (RB) and left border (LB), and filler DNA and duplications or deletions of grapevine DNA at the T-DNA insertion loci. In 20 T-DNA/grapevine genome junctions microsimilarities were found associated with the joining points and in all grapevine lines microsimilarities were present near the breaking points along the 30 bases of T-DNA adjacent to the two borders. Analysis of target site preferences of T-DNA insertions indicated a non-random distribution of the T-DNA, with a bias toward the intron regions of the grapevine genes. Compositional analysis of grapevine DNA around the T-DNA insertion sites revealed an inverse relationship between the CG and AT-skews and AT rich sequences present at 300–500 bp upstream the insertion points, near the RB of the T-DNA. PCR assays showed that vector backbone sequences were integrated in 28.6% of the transgenic plants analyzed and multiple T-DNAs frequently integrated at the same position in the plant genome, resulting in the formation of tandem and inverted repeats.  相似文献   

20.
孙丙耀  谈建中  陆小平  曲春香  万志刚  顾福根 《遗传》2006,28(12):1555-1561
采用TAIL-PCR技术从经鉴定含Ac/Ds双元件的材料中扩增Ds侧翼序列并测序, 对水稻Ac×Ds后代基因组DNA进行Ac和Ds插入的PCR分析。利用NCBI的BLAST软件, 以Ds侧翼序列为待查询序列进行GenBank在线搜索比对, 获得Ds插入相关基因的染色体定位和功能注释等信息。对扩增的93个有效Ds侧翼序列进行分析, 结果显示, 有21个水稻杂交后代中Ds插入于基因编码区, 其余72个插入在基因间序列, 其中12个插入在特定基因的上游3 kb以内的间隔区。本研究强调了提高Ds侧翼序列扩增和Ac/Ds植株筛选效率的技术关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号