首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
原子力显微镜(AFM)的发明为微纳尺度下高分辨率探测天然状态生物样本的物理特性提供了强大工具,是对传统生化特性检测方法的有力补充.近年来,多参数成像模式AFM的出现使得人们不仅可以获取生物样本表面形貌特征,还能同时获取生物样本多种力学特性图(如杨氏模量、黏附力、形变等),为研究生物结构、力学特性及其生理功能之间的关联提供了新的技术手段.多参数成像AFM的生物医学应用研究为细胞/分子生理活动及相关疾病内在机理带来了大量新的认识.本文结合作者在AFM细胞探测方面的研究工作,介绍了多参数成像AFM工作原理,总结了多参数成像AFM在细胞及分子力学特性探测方面的研究进展,并对其存在的问题进行了讨论和展望.  相似文献   

2.
原子力显微镜在生物学研究中的应用进展   总被引:2,自引:0,他引:2  
原子力显微镜(atomic force microscope,AFM)具有原子级分辨率,能够在生理条件下对生物样品进行观察,本综述了AFM的原理及技术要点,举例说明了它在核酸,蛋白质,微生物及细胞等领域的应用进展,相信AFM必将在生物学研究中起到越来越重要的作用。  相似文献   

3.
原子力显微镜(atomic force microscope,AFM)是扫描探针显微镜(SPM)的一种,其分辨率达到纳米级,能对从原子到分子尺度的结构进行三维成像和测量,能观察任何活的生命样品及动态过程。本文概述了AFM的基本工作原理及在生物医学上对DNA、蛋白质、细胞及生物过程等方面进行的研究。  相似文献   

4.
利用透射电子显微镜(TEM)和原子力显微镜(AFM)观察流感病毒(H1N1),探讨AFM在病毒形态研究中的应用,为病毒形态学研究提供一种新型、简便、快捷的工具.TEM采用磷钨酸负染方法,AFM采用轻敲模式在大气常温下扫描成像,并对主要指标长度(直径)、Ra、Rq等进行测量.两种方法最终得到相似的形态学结果,流感病毒呈球状、丝状,并有一些形状介于两者之间.TEM提供了流感病毒二维图像,可见钉状突起,AFM则呈现了流感病毒三维图像,且可见病毒表面有凹凸不平的特征和边缘有齿轮状的突起,同时获得表面粗糙度等可以量化指标.与TEM观察相比,原子力显微镜是一种制样简单、观察直观的新型病毒形态学研究工具,其表征参数可以作为病毒形态学研究的量化指标.  相似文献   

5.
本文介绍了一类可以从原子水平到微米尺寸观察物质结构的三维成像工具——扫描探针显微镜(SPM),重点介绍了扫描隧道显微镜(STM)和原子力显微镜(AFM)的基本原理,以及SPM在细胞生物学、核酸和小分子成像等生物医学研究领域的一些应用。SPM不久将可能成为大多数生命科学实验室的一项重要技术。  相似文献   

6.
原子力显微镜(Atomic force microscopy,AFM)作为一种纳米级高分辨率的探针扫描显微镜,在病毒形态学研究等领域有广泛的应用。为更好地利用AFM在接近病毒生理环境(液相)中观测单个病毒颗粒,选择合适的基底吸附病毒样品是重要的前提保障。本文介绍了一种病毒样品制备及AFM液相成像方法。首先制备疏水化处理的玻璃盖玻片作为吸附基底,再将观察样品腺病毒重组载体颗粒(Adenovirus type 5F35,Ad5F35)吸附于基底上,建立在液相下单个病毒颗粒的原子力显微镜成像方法。通过该方法获取了单个腺病毒颗粒在液相下的高分辨率纳米级高度图(height image),且病毒颗粒保持了约90nm的正确测量高度。实验结果表明疏水化处理的玻璃基底具有良好的吸附力,有助于病毒颗粒牢固地吸附在基底上,且不会引起较大的形变。本研究为AFM观测病毒等生物样品提供了一种较为合适的吸附基底和在液相中的AFM成像方法,对后期开展病毒形态结构、物理属性及其与宿主细胞受体相互作用的研究打下基础。  相似文献   

7.
不同固定条件下细胞与活细胞的原子力显微镜实时观察   总被引:3,自引:0,他引:3  
用原子力显微镜(atom force microscope,AFM)观察固定细胞的最佳条件并在生理溶液中对活细胞实时观察.用不同固定剂和同一固定剂的不同浓度处理细胞;不加任何固定剂而直接在生理溶液中对细胞进行AFM成像.以戊二醛为固定剂并使用0.5%~1%的浓度固定细胞,后用缓冲溶液漂洗,再对细胞进行成像时可获得质量良好的图像.直接在生理溶液中进行观察,成像质量低于使用固定剂的细胞,但保持了细胞的生活原貌.在用原子力显微镜高分辨率观察生理条件下细胞的特点时,需要在制样与观测系统两方面进行改进.  相似文献   

8.
利用原子力显微镜(AFM)成像技术观察胶原蛋白溶液在UV-B照射前后形态的变化,发现UV-B引起胶原纤维交联度的增加,当交联达一定程度后,照射时间的增加对交联度增加的影响不明显。AFM作为一种高分辨的表面分析仪器,为分子生物学领域的研究提供了一种新的手段。是探讨胶原光作用机理直观、有效的方法。  相似文献   

9.
原子力显微镜(AFM)作为生物样品表面表征的有力工具, 具有独特的优势。本文在介绍原子力显微镜基本原理的基础上, 综述了原子力显微镜样品制备以及原子力显微镜形貌分析、力曲线以及动力学分析在生物领域中的应用。  相似文献   

10.
激光对DNA作用机理的AFM研究   总被引:8,自引:0,他引:8  
激光作用质粒DNA和小牛胸腺DNA产生损伤效应,导致DNA结构变化,利用一种改进的试样制备过程和纳米显微镜--原子力显微镜(AFM)能够获得可重现的激光作用质粒DNA和小牛胸腺DNA的AFM图像,显示它们的特殊的表达结构,讨论了激光辐照导致DNA链断裂的作用机理。  相似文献   

11.
Atomic force microscopy (AFM), a relatively new variant of scanning probe microscopy developed for the material sciences, is becoming an increasingly important tool in other disciplines. In this review I describe in nontechnical terms some of the basic aspects of using AFM to study living vertebrate cells. Although AFM has some unusual attributes such as an ability to be used with living cells, AFM also has attributes that make its use in cell biology a real challenge. This review was written to encourage researchers in the biological and biomedical sciences to consider AFM as a potential (and potent) tool for their cell biological research.  相似文献   

12.
Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances have enabled its application in cancer research and diagnosis. The physicochemical properties of live cells undergo changes when their physiological conditions are altered. These physicochemical properties can therefore reflect complex physiological processes occurring in cells. When cells are in the process of carcinogenesis and stimulated by external stimuli, their morphology, elasticity, and adhesion properties may change. AFM can perform surface imaging and ultrastructural observation of live cells with atomic resolution under near-physiological conditions, collecting force spectroscopy information which allows for the study of the mechanical properties of cells. For this reason, AFM has potential to be used as a tool for high resolution research into the ultrastructure and mechanical properties of tumor cells. This review describes the working principle, working mode, and technical points of atomic force microscopy, and reviews the applications and prospects of atomic force microscopy in cancer research.  相似文献   

13.
Supported lipid bilayers (SLBs) are widely used in biophysical research to investigate the properties of biological membranes and offer exciting prospects in nanobiotechnology. Atomic force microscopy (AFM) has become a well-established technique for imaging SLBs at nanometer resolution. A unique feature of AFM is its ability to monitor dynamic processes, such as the interaction of bilayers with proteins and drugs. Here, we present protocols for preparing dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers supported on mica using small unilamellar vesicles and for imaging their nanoscale interaction with the antibiotic azithromycin using AFM. The entire protocol can be completed in 10 h.  相似文献   

14.
The atomic force microscope (AFM) is a versatile instrument that can be used to image biological samples at nanometre resolution as well as to measure inter and intra-molecular forces in air and liquid environments. This review summarises the use of AFM applied to protein and peptide self-assembly systems involved in amyloid formation. The technical principles of the AFM are outlined and its advantages and disadvantages are highlighted and discussed in the context of the rapidly developing field of amyloid research.  相似文献   

15.
叶志义  范霞 《生命科学》2009,(1):156-162
细胞表面的力学性质会随着细胞所处环境的不同而发生改变,它的变化间接反映出胞内复杂的生理过程。原子力显微镜(atomic force microscope,AFM)能以高的灵敏度和分辨率检测活体细胞,通过利用赫兹模型分析力曲线可以获得细胞的弹性信息。本文简介了原子力显微镜的工作原理与工作模式,着重介绍利用AFM力曲线检测细胞弹性的方法及其在细胞运动、细胞骨架、细胞黏附、细胞病理等方面的应用成果,表明AFM已经成为细胞弹性研究中十分重要的显微技术。  相似文献   

16.
Biological atomic force microscopy (AFM) is a fast growing and advancing field. This review's objective is to overview the state of the art and to retrace achievements of biological AFM as presented by past and present research, and wishes to give a (subjective) outlook where AFM may go in the upcoming years. The following areas of interest are discussed: High-resolution imaging, cell imaging, single molecule force spectroscopy, cell mechanical measurements, combined AFM instrumentation, and AFM instrumentation. Of all these topics, particular representative examples are shown, each of them standing for a variety of achievements by many research groups.  相似文献   

17.
Understanding the structural organization and distribution of proteins in biological cells is of fundamental importance in biomedical research. The use of conventional fluorescent microscopy for this purpose is limited due to its relatively low spatial resolution compared to the size of a single protein molecule. Atomic force microscopy (AFM), on the other hand, allows one to achieve single-protein resolution by scanning the cell surface using a specialized ligand-coated AFM tip. However, because this method relies on short-range interactions, it is limited to the detection of binding sites that are directly accessible to the AFM tip. We developed a method based on magnetic (long-range) interactions and applied it to investigate the structural organization and distribution of endothelin receptors on the surface of smooth muscle cells. Endothelin receptors were labeled with 50-nm superparamagnetic microbeads and then imaged with magnetic AFM. Considering its high spatial resolution and ability to “see” magnetically labeled proteins at a distance of up to 150 nm, this approach may become an important tool for investigating the dynamics of individual proteins both on the cell membrane and in the submembrane space.  相似文献   

18.
原子力显微镜(AFM)以其独特的优势(纳米级空间分辨率、皮牛级力灵敏度、免标记、可在溶液下工作)成为细胞生物学的重要研究手段.AFM不仅可以对活细胞表面超微形貌进行可视化表征,同时还可通过压痕技术对细胞机械特性(如杨氏模量)进行定量测量,为原位探索纳米尺度下单个活细胞动态生理活动及力学行为提供了可行性.过去的数十年中,研究人员利用AFM在细胞超微形貌成像和机械特性测量方面开展了广泛的应用研究,展示了有关细胞生理活动的大量新认识,为生命医药学领域相关问题的解决提供了新的思路;同时AFM自身的性能也在不断得到改进和提升,进一步促进了其在生命科学领域的应用.本文结合作者在应用AFM观测纳米尺度下癌症靶向药物作用效能方面的研究工作,介绍了AFM成像与细胞机械特性测量的原理,总结了近年来AFM用于细胞表面超微形貌成像与机械特性测量所取得的进展,讨论了AFM表征与检测细胞生理特性存在的问题,并对其未来发展方向进行了展望.  相似文献   

19.
Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience.  相似文献   

20.
AFM (atomic force microscopy) analysis, both of fixed cells, and live cells in physiological environments, is set to offer a step change in the research of cellular function. With the ability to map cell topography and morphology, provide structural details of surface proteins and their expression patterns and to detect pico‐Newton force interactions, AFM represents an exciting addition to the arsenal of the cell biologist. With the explosion of new applications, and the advent of combined instrumentation such as AFM—confocal systems, the biological application of AFM has come of age. The use of AFM in the area of biomedical research has been proposed for some time, and is one where a significant impact could be made. Fixed cell analysis provides qualitative and quantitative subcellular and surface data capable of revealing new biomarkers in medical pathologies. Image height and contrast, surface roughness, fractal, volume and force analysis provide a platform for the multiparameter analysis of cell and protein functions. Here, we review the current status of AFM in the field and discuss the important contribution AFM is poised to make in the understanding of biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号