首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
原子力显微镜(AFM)作为一项重要的表面可视化技术,以其独特的优势(纳米级的空间分辨率、皮牛级力灵敏度、免标记、可在溶液环境下工作)被广泛应用于生物被膜的研究。AFM不仅可以在近生理环境下对生物被膜表面超微形貌进行可视化表征,同时还可以通过纳米压痕对生物被膜的机械特性(弹性和粘性)进行定量测量,利用AFM单细胞和单分子力谱技术可以获得生物被膜形成过程中细胞-基底以及细胞-细胞之间的相互作用力,为生物被膜的实时原位系统研究提供了可行性。本文简述了AFM的基本操作原理,综述了近年来AFM用于生物被膜表面超微结构成像、机械特性测量以及相互作用力研究方面的进展,并对AFM在生物被膜研究中面临的问题和未来的发展方向进行了讨论。  相似文献   

2.
原子力显微镜(AFM)的发明为测量生理环境下单个活细胞的机械特性提供了新的技术手段.现有AFM单细胞机械特性研究集中在测量细胞弹性.细胞本质上是黏弹性的,但目前关于细胞黏弹性在细胞生理活动行为中作用的认知还很不足.基于AFM逼近-停留-回退实验,发展了可同时对细胞弹性及黏弹性进行测量的方法,并应用该方法首先测量了正常乳腺细胞和乳腺癌细胞的弹性(杨氏模量)及黏弹性(松驰时间),显示出正常乳腺细胞和乳腺癌细胞的杨氏模量及松弛时间均有着显著的差异.AFM成像揭示了正常乳腺细胞和乳腺癌细胞在细胞表面形态及几何特征方面的差异.随后对3种不同类型的细胞系及原代B淋巴细胞进行了测量,证明了松驰时间在辅助杨氏模量鉴定细胞状态方面的潜力.实验结果为定量测量细胞机械特性提供了新的方法,便于从多个角度研究单个细胞的生物力学行为.  相似文献   

3.
目的 细胞力学特性与细胞生理病理变化过程及机体健康状态密切相关,研究细胞力学特性对于揭示生命活动内在机制具有重要科学意义.原子力显微镜(AFM)的出现为单细胞研究提供了新的技术手段,它不仅可以在溶液环境下对单个活细胞的形貌结构进行高分辨率成像,还能够对细胞力学特性进行定量测量.基于AFM的单细胞力学特性研究在过去数十年...  相似文献   

4.
外泌体在细胞生理病理活动过程中起着重要的调控作用,研究外泌体的行为特性对于揭示生命活动及疾病发生发展的内在机理具有重要的基础意义.然而由于缺乏合适的观测手段及方法,目前对于活体状态下外泌体结构及特性的认知仍然很不足.原子力显微镜(AFM)的发明为研究溶液环境下天然状态生物样本提供了强大的技术工具,已成为生物学重要研究手段.本文利用AFM对单个活体状态外泌体的纳米结构及机械特性进行了研究.通过多聚赖氨酸静电吸附作用将从淋巴瘤患者骨髓中分离的外泌体吸附至基底,在溶液环境下实现了对单个活体状态外泌体的高质量AFM形貌成像并通过与空气中成像结果进行对比揭示了空气干燥处理对外泌体形貌的影响.在此基础上,分别利用AFM压痕试验和多参数成像技术实现了对单个活体状态外泌体机械特性的定量测量和可视化表征.最后基于所建立的方法技术揭示了化学处理后外泌体结构和机械特性的动态变化.研究结果为研究纳米尺度下活体状态外泌体的结构及特性,以更好理解天然状态外泌体的生理行为提供了新的方法和思路,对于外泌体研究具有潜在积极的意义.  相似文献   

5.
原子力显微镜(AFM)的发明为微纳尺度下高分辨率探测天然状态生物样本的物理特性提供了强大工具,是对传统生化特性检测方法的有力补充.近年来,多参数成像模式AFM的出现使得人们不仅可以获取生物样本表面形貌特征,还能同时获取生物样本多种力学特性图(如杨氏模量、黏附力、形变等),为研究生物结构、力学特性及其生理功能之间的关联提供了新的技术手段.多参数成像AFM的生物医学应用研究为细胞/分子生理活动及相关疾病内在机理带来了大量新的认识.本文结合作者在AFM细胞探测方面的研究工作,介绍了多参数成像AFM工作原理,总结了多参数成像AFM在细胞及分子力学特性探测方面的研究进展,并对其存在的问题进行了讨论和展望.  相似文献   

6.
原子力显微镜(AFM)的出现为免标记研究近生理环境下单个活体状态细胞的机械特性提供了新的技术手段.自20世纪90年代中期以来,研究人员在利用AFM测量细胞机械特性方面开展了大量研究,结果表明细胞机械特性是一个新的免标记生物标志物(可有效指示细胞生理状态的变化),加深了人们对癌症等重大疾病的认识,促进了细胞生物力学的发展.然而,现有的AFM单细胞机械特性研究主要集中在体外培养的细胞系,由于体内体外环境的巨大差异导致测量结果难以完全反映人体内的真实情况.特别是在精准医疗时代,需要对来自患者的原代细胞进行测试分析以实现疾病的个性化诊治.因此发展直接对临床患者原代细胞(癌变细胞和正常细胞)机械特性进行离体检测的方法具有潜在的转化医学实际意义.本文结合作者在基于AFM的淋巴瘤病例细胞机械特性测量与表征方面的研究工作,介绍了AFM测量细胞机械特性的原理与方法,总结了近年来AFM在检测原代细胞机械特性方面的进展,并对其面临的问题和挑战进行了讨论.  相似文献   

7.
原子力显微镜(atomic force microscope,AFM)是扫描探针显微镜(SPM)的一种,其分辨率达到纳米级,能对从原子到分子尺度的结构进行三维成像和测量,能观察任何活的生命样品及动态过程。本文概述了AFM的基本工作原理及在生物医学上对DNA、蛋白质、细胞及生物过程等方面进行的研究。  相似文献   

8.
目的 细胞力学特性在生理病理变化过程中起着关键调控作用,开展细胞力学特性研究为揭示生命活动奥秘及疾病发生发展演变规律提供了新的视角。原子力显微镜(AFM)的出现为单细胞力学特性研究提供了强大的技术手段。AFM的独特优势是不需要对活细胞进行任何预处理即可在溶液环境下对天然状态的活细胞力学特性进行高精度(纳米级空间分辨率,皮牛级力感知灵敏度)探测。基于AFM压痕实验的细胞力学特性探测已成为生命科学领域的重要研究方法。然而,现有基于AFM的单细胞力学特性测量主要依赖于人工操作,特别是在测量过程中需要人工控制AFM探针移动到细胞表面特定位置进行压痕实验,导致实验过程耗时费力且效率低下。本文通过将AFM与光学图像自动识别相结合建立了单细胞力学特性快速测量方法。方法 分别利用UNet++深度学习网络模型和模板匹配算法识别出光学图像中的细胞及AFM探针,在此基础上自动确定细胞和AFM探针之间的空间位置关系,并控制AFM探针准确移动至目标细胞表面进行压痕实验。在光学显微镜视觉导引下利用AFM微操作将单个微球黏附至AFM探针悬臂梁制作得到球形针尖探针。选取HEK 293(人胚胎肾细胞)和MCF-7(人乳腺癌细胞)两种细胞进行实验。利用Hertz-Sneddon模型对在细胞表面获取的力曲线进行分析得到细胞杨氏模量。结果 基于光学图像识别结果可将AFM探针针尖准确移动至目标细胞(HEK 293或MCF-7)并对细胞力学特性进行测量,同时实验结果表明本文所提出的方法不仅适用于常规AFM锥形针尖探针,也适用于AFM球形针尖探针。结论 将AFM与光学图像识别结合显著提升了AFM细胞力学特性测量效率,为高通量自动化AFM单细胞力学特性探测提供了新的方法和思路,对于细胞力学特性研究具有广泛的积极意义。  相似文献   

9.
天然高分子水凝胶以其良好的生物相容性以及生物可降解性在生物医学领域得到了广泛应用,然而由于缺乏合适的观测手段,目前对于纳米尺度下天然状态水凝胶的精细结构及其特性仍然不完全清楚.原子力显微镜(atomic force microscopy, AFM)的出现为生物材料研究提供了新的强大技术手段,但目前利用AFM对天然高分子水凝胶纳米结构进行原位成像的研究还较为缺乏.本文利用AFM对4种不同类型食虫植物(茅膏菜、捕虫堇、瓶子草、捕蝇草)分泌的天然水凝胶黏液的结构进行了高分辨率原位成像与分析.分别将茅膏菜黏液和捕虫堇黏液平铺至云母表面,在空气中进行的AFM成像结果清晰地显示,茅膏菜黏液和捕虫堇黏液中均含有大量纳米纤维结构,且纳米纤维自组装行为具有多样性.分别将瓶子草黏液和捕蝇草黏液平铺至载玻片表面,在去离子水溶液中进行的AFM成像结果揭示了瓶子草黏液和捕蝇草黏液中均含有大量纳米颗粒,对纳米颗粒进行的统计分析显示,捕蝇草黏液中的纳米颗粒尺寸显著大于瓶子草黏液中纳米颗粒的尺寸.研究结果加深了人们对食虫植物分泌的天然水凝胶黏液的认识,为天然生物材料精细纳米结构研究提供了新的方法和视角.  相似文献   

10.
细胞黏附在细胞生理功能中起着重要的调控作用,对细胞黏附行为进行定量研究有助于理解生命活动内在机制.原子力显微镜(AFM)的出现为研究溶液环境下微纳尺度生物系统的生物物理特性提供了强大工具,特别是AFM单细胞力谱(SCFS)技术可以对单细胞黏附力进行测量.但目前利用SCFS技术进行的研究主要集中在贴壁细胞,对于动物悬浮细胞黏附行为进行的研究还较为缺乏.本文利用AFM单细胞力谱技术(SCFS)对淋巴瘤细胞黏附行为进行了定量测量.研究了淋巴瘤细胞与其单克隆抗体药物利妥昔(利妥昔单抗与淋巴瘤细胞表面的CD20结合后激活免疫攻击)之间的黏附力,分析了利妥昔浓度及SCFS测量参数对黏附力的影响,并对淋巴瘤细胞之间的黏附力进行了测量.实验结果证明了SCFS技术探测动物悬浮细胞黏附行为的能力,加深了对淋巴瘤细胞黏附作用的认识,为单细胞尺度下生物力学探测提供了新的可能.  相似文献   

11.
Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy(AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.  相似文献   

12.
The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements.  相似文献   

13.
The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements.  相似文献   

14.
Methotrexate is a commonly used anti-cancer chemotherapy drug. Cellular mechanical properties are fundamental parameters that reflect the physiological state of a cell. However, so far the role of cellular mechanical properties in the actions of methotrexate is still unclear. In recent years, probing the behaviors of single cells with the use of atomic force microscopy (AFM) has contributed much to the field of cell biomechanics. In this work, with the use of AFM, the effects of methotrexate on the viscoelastic properties of four types of cells were quantitatively investigated. The inhibitory and cytotoxic effects of methotrexate on the proliferation of cells were observed by optical and fluorescence microscopy. AFM indenting was used to measure the changes of cellular viscoelastic properties (Young’s modulus and relaxation time) by using both conical tip and spherical tip, quantitatively showing that the stimulation of methotrexate resulted in a significant decrease of both cellular Young’s modulus and relaxation times. The morphological changes of cells induced by methotrexate were visualized by AFM imaging. The study improves our understanding of methotrexate action and offers a novel way to quantify drug actions at the single-cell level by measuring cellular viscoelastic properties, which may have potential impacts on developing label-free methods for drug evaluation.  相似文献   

15.
Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.  相似文献   

16.
Mechanical properties play an important role in regulating cellular activities and are critical for unlocking the mysteries of life. Atomic force microscopy (AFM) enables researchers to measure mechanical properties of single living cells under physiological conditions. Here, AFM was used to investigate the topography and mechanical properties of red blood cells (RBCs) and three types of aggressive cancer cells (Burkitt??s lymphoma Raji, cutaneous lymphoma Hut, and chronic myeloid leukemia K562). The surface topography of the RBCs and the three cancer cells was mapped with a conventional AFM probe, while mechanical properties were investigated with a micro-sphere glued onto a tip-less cantilever. The diameters of RBCs are significantly smaller than those of the cancer cells, and mechanical measurements indicated that Young??s modulus of RBCs is smaller than those of the cancer cells. Aggressive cancer cells have a lower Young??s modulus than that of indolent cancer cells, which may improve our understanding of metastasis.  相似文献   

17.
Summary Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains ofKalanchoe blossfeldiana andZea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs ofRaphanus sativus andZ. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts ofZ. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized.Abbreviations AFM atomic force microscope - FESEM field emission scanning electron microscope - PyMS pyrolysis mass spectrometry - TEM transmission electron microscope  相似文献   

18.
ABSTRACT

Atomic force microscopy (AFM) increasingly has been used to analyse “receptor” function, either by using purified proteins (“molecular recognition microscopy”) or, more recently, in situ in living cells. The latter approach has been enabled by the use of a modified commercial AFM, linked to a confocal microscope, which has allowed adhesion forces between ligands and receptors in cells to be measured and mapped, and downstream cellular responses analysed. We review the application of AFM to cell biology and, in particular, to the study of ligand–receptor interactions and draw examples from our own work and that of others to show the utility of AFM, including for the exploration of cell surface functionalities. We also identify shortcomings of AFM in comparison to “standard” methods, such as receptor auto-radiography or immuno-detection, that are widely applied in cell biology and pharmacological analysis.  相似文献   

19.
Background information. The endometrial epithelial cell membrane is a key interface in female reproductive biology. Steroid hormones play a predominant role in cyclic changes which occur at this interface during the female menstrual cycle. Specific changes in the morphology of the endometrial epithelial cell surface become apparent with the epithelial transition that drives the switch from a non‐receptive to receptive surface due to the action of progesterone on an oestrogen primed tissue. AFM (atomic force microscopy) allows the high‐resolution characterization of the endometrial epithelial cell surface. Its contact probe mechanism enables a unique imaging method that requires little sample preparation, yielding topographical and morphological characterization. By stiffening the cell membrane, low concentrations of fixatives allow the surface detail of the cell to be resolved while preserving fine ultra‐structural details for analysis. Results. In the present study we use high resolution AFM analysis of endometrial epithelial cells to monitor the effect of progesterone on the nanoscale structure of the endometrial cell surface. High‐resolution imaging reveals similar topographical nanoscale changes in both the Hec‐1‐A and Ishikawa model cell lines. Hec‐1‐B cells, used in the present study as a progesterone receptor negative control, however, exhibit a flattened cell surface morphology following progesterone treatment. Changes in average cell height and surface convolution correlate with increased surface roughness measurements, demonstrating alterations in molecular structure on the cell surface due to hormonal stimulation. Conclusions. Progesterone treatment induces changes to the cell surface as a result of nanoscale molecular modifications in response to external hormonal treatments. AFM provides the basis for the identification, visualization and quantification of these cell surface nanoscale changes. Together these findings demonstrate the utility of AFM for use in reproductive science and cancer biology where it could be applied in both in vitro analysis of protein structure—function relationships and clinical diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号