首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
小鼠体外受精、胚胎培养及胚胎快速冷冻的研究   总被引:5,自引:0,他引:5  
目的 为扩大胚胎来源并获取特定胚龄胚胎 ,建立小鼠冷冻胚胎库。方法 运用超数排卵、体外受精与胚胎培养及胚胎冷冻技术系统研究了小鼠受精卵的体内发育与运行规律。卵母细胞的体外成熟与受精、单细胞胚胎培养及胚胎快速冷冻。结果  (1)注射hCG后 12~ 2 0h受精卵发育至原核期 ,4 2~ 4 8h为 2 细胞期 ,4 8~ 6 0h为 4 细胞期 ,6 0~ 6 8h为 8 细胞期 ,以上各期受精卵均处于输卵管中 ;75~ 78h为桑椹胚 ,78~ 80h为致密桑椹胚 ,90~ 92h为早期囊胚 ,92~ 96h为囊胚 ,以上各期均处于子宫角中。 (2 )培养液中添加促性腺激素 (FSH与hCG) ,能显著提高卵母细胞的体外受精率 ,添加FCS和激素组的体外受精率又显著高于单独添加激素组 ,FCS还能显著提高胚胎发育。 (3)在培养液中添加EDTA ,能有效克服小鼠胚胎的 2 细胞阻断 ,其 2 细胞胚的发育率达 10 0 % ,8 细胞胚发育率达 5 5 %以上 ;牛、羊上皮细胞培养液上清也能有效克服 2 细胞阻断。添加乳酸钠和丙酮酸钠可使 2细胞与 8细胞期胚的发育率显著提高。 (4)以D PBS +甘油 +蔗糖为冷冻液 ,以D PBS +蔗糖为稀释液 ,对小鼠胚胎进行快速冷冻 ,桑椹胚的存活率为 6 9 3% ,早期囊胚的存活率为 6 0 4 %。结论 研究为将生物技术应用于小鼠 ,扩大卵子和胚胎来源  相似文献   

2.
采用玻璃化冷冻法对ICR、C57BL/6、DBA~*C57BL/6杂交F1代三种品系小鼠的不同阶段胚胎进行冷冻保存,比较胚胎解冻后形态良好率、体外发育率和移植后的出生率,结果表明解冻后各品系小鼠胚胎从2细胞到桑椹胚形态良好率在75%以上,其中8细胞胚胎形态良好率在83%以上,而囊胚的形态良好率仅在40%左右。解冻后胚胎体外培养的发育率随胚胎发育阶段的提高而提高,桑椹胚的发育达93%以上。体外受精2细胞冷冻胚与体内受精2细胞冷冻胚比较,二者形态良好率差异无显著意义(74%∶75%),但体内受精冷冻胚的发育率明显高于体外受精冷冻胚(76%:40%,p<0.01);胚胎经过三次反复冻融后形态良好率无显著差别;冷冻2细胞胚移植后的受孕率与仔鼠出生率分别达64%和40%,但均低于新鲜2细胞胚。  相似文献   

3.
乙二醇(ETG)和1,2-丙二醇(PROH)具有高细胞渗透性和低毒性特点,常被用于人及多种哺乳动物早期胚胎冷冻保存。为了比较ETG和PROH对小鼠2-细胞胚的冷冻保护效果,本试验分别采用这两种冷冻保护剂,对小鼠2-细胞胚进行冷冻保存,并采用冻后体外培养和囊胚移植进行冷冻效果检测。结果表明,PROH组胚胎解冻后胚胎存活率与ETG组无显著差异,但PROH组4-细胞胚发育率和囊胚发育率显著高于ETG组(82.7%vs.64.6%,61.2%vs.29.1%,P〈0.01)。囊胚移植结果表明,2-细胞胚胎冻存后能够发育为正常的后代,PROH组和ETG组的囊胚移植后妊娠产仔率无统计学差异(P〉0.05),但均显著低于对照组(P〈0.05)。为了分析两组胚胎冻存后损伤情况,埘解冻后的胚胎细胞微丝进行检测,结果显示ETG组微丝受损的胚胎数高于PROH组。本研究结果证明采用PROH作为冷冻保护剂冷冻保存小鼠2-细胞胚的冻存效果优于ETG[动物学报54(6):1098—1105,2008]。  相似文献   

4.
小鼠胚胎徒手分割技术的研究   总被引:1,自引:0,他引:1  
目的 研究不同分割液和分割前胚胎去致密化与否对昆明白系小鼠的桑椹胚和囊胚的徒手分割以及分割后胚胎移植的影响。方法 在mPBS、1 2 5 %蔗糖液和进口分割液三种不同分割液中对桑椹胚和囊胚进行徒手分割。结果和结论 在蔗糖液与进口分割液中分割桑椹胚 ,成功率显著高于mPBS处理组 (6 9 5 3%、77 4 0 %vs5 6 82 % ) (P <0 0 5 ) ,而半胚的囊胚发育率及囊胚细胞数三组差异均无显著性 (P >0 0 5 ) ;在蔗糖液与进口分割液中分割囊胚 ,分割后半胚培养的囊胚发育率显著高于mPBS处理组 (72 38%、74 2 9%vs 5 6 2 0 % ) (P <0 0 1 ) ,而分割成功率及囊胚细胞数三组差异均无显著性 (P >0 0 5 ) ;各处理组半胚的囊胚发育率及囊胚细胞数都显著低于对照组体外培养桑椹胚的囊胚发育率 (98 70 % )和囊胚细胞数 (6 3 6 7± 5 78) (P <0 0 1 ) ;桑椹胚经去致密化处理后分割 ,其分割成功率显著高于未处理组 (82 90 %vs 5 6 6 0 % ) (P <0 0 1 ) ,处理组半胚培养的囊胚发育率也显著高于未处理组 (73 80 %vs 4 6 80 % ) (P <0 0 1 ) ;共移植 1 4 2枚 2分胚形成的囊胚移植于 1 1只受体 ,其中 3只妊娠 ,分别产仔 2只、3只和 4只  相似文献   

5.
葡萄糖对ICR小鼠胚胎体外发育的影响   总被引:5,自引:0,他引:5  
丁芳  周红林  刘洋  马兰  苏莹  杜玲 《动物学研究》2007,28(5):501-506
研究葡萄糖在小鼠早期胚胎体外发育中的作用。实验1将6—8周龄的ICR雌鼠超数排卵后与公鼠交配,收集1-细胞放入含0(对照组)、0.5、1、3、5、10mmol/L葡萄糖的CZB中培养;实验2将从超排的ICR雌鼠输卵管内收集的1-细胞放入无糖CZB中培养,分别于1细胞、2细胞、4细胞、桑椹胚阶段移入含3.0mmol/L葡萄糖(最适浓度)的CZB中,培养24h后又移回到无糖CZB中(桑椹胚阶段除外)继续培养以及整个胚胎培养过程均在含糖CZB中,对照组胚胎培养全程均在无糖CZB中。每组胚胎于37℃、5%CO2培养箱中培养120h,每24h在倒置显微镜下观察胚胎发育情况,分别计算2-细胞率、4-细胞率、桑椹胚率、囊胚率和孵化率,并进行囊胚细胞计数。结果显示,小鼠胚胎在含糖CZB中与在无糖CZB中4-细胞发育率无差异;含糖CZB中囊胚率显著高于对照组;3.0mmol/L浓度组囊胚细胞数显著高于其余组;2-细胞至4-细胞、4-细胞至桑椹胚前添加葡萄糖囊胚率显著高于对照组,1-细胞至2-细胞、桑椹胚及其以后阶段添加葡萄糖囊胚率与对照组无差异。实验证实,在ICR小鼠胚胎体外培养中加入葡萄糖不会导致2-细胞阻滞;葡萄糖浓度增至10mmol/L对ICR小鼠胚胎无毒性作用;ICR小鼠胚胎体外培养的最适葡萄糖浓度为3.0mmol/L;2-细胞至4-细胞、4-细胞至桑椹胚前添加葡萄糖是必要的。  相似文献   

6.
丁芳  周红林 《动物学研究》2007,28(5):501-506
通过在CZB培养液中添加不同浓度葡萄糖及在胚胎发育的不同阶段加入葡萄糖,对小鼠胚胎进行体外培养,以探讨葡萄糖在小鼠早期胚胎体外发育中的作用。其结果表明,小鼠胚胎在含糖CZB与在无糖CZB中培养比较,4-细胞发育率无差异;各浓度葡萄糖组囊胚率显著高于无糖组,其中3.0mmol/L浓度组囊胚细胞数显著高于其余组;实验二:2-细胞至4-细胞、4-细胞至桑椹胚前添加葡萄糖囊胚率显著提高。上述结果证明,在小鼠胚胎体外培养中加入葡萄糖不会导致2-细胞阻滞;葡萄糖浓度增加至10mmol/L对小鼠胚胎无毒性作用,其最适浓度为3.0mmol/L;2-细胞至4-细胞、4-细胞至桑椹胚前添加葡萄糖是必要的。关键词 葡萄糖;小鼠;2-细胞阻滞;胚胎;体外发育  相似文献   

7.
绵羊胎儿成纤维细胞不同处理对核移植重构胚发育的影响   总被引:1,自引:0,他引:1  
研究供体细胞代数、大小、周期以及基因转染处理对重构胚发育的影响. 结果如下: (i)体外培养5~7代细胞做供体核, 重构胚的桑椹/囊胚率显著高于16~18代细胞的桑椹/囊胚率(17.3% vs. 4.9%, P < 0.05); (ii) 15~25 μm细胞做供体核, 重构胚的桑椹/囊胚率为20.0%, 高于8~15 mm细胞、25~33 μm细胞桑椹/囊胚率(8.0%, 9.7%), 但效果不显著(P > 0.05); (iii) 血清饥饿与非血清饥饿的细胞做供体核, 重构胚的桑椹/囊胚发育率没有显著性差异(11.8% vs. 18.6%, P > 0.05), 但非血清饥饿的效果要好于血清饥饿; (iv) 用0.05 μmol/L秋水仙素处理供体细胞效果最好, 重构胚的桑椹/囊胚率可达27.5%, 而未处理或用0.1 μmol/L秋水仙素处理供体细胞, 重构胚的桑椹/囊胚率分别为17.1%和12.1%, 但三者之间差异不显著(P > 0.05); (v) 以转染绿色荧光蛋白基因(GFP)细胞做供体核, 重构胚的桑椹/囊胚率显著低于非转基因细胞做供体核的桑椹/囊胚率(3.1% vs. 20.4%, P < 0.05). 上述结果表明, 传代少、中等大小的细胞更适合做供体核; 血清饥饿没有必要; 用0.05 μmol/L秋水仙素处理供体细胞有利于重构胚的发育; 转基因供体细胞对重构胚发育有影响.  相似文献   

8.
为了评价利用不同冷冻保护剂冷冻早期卵裂期胚胎的效果,用小鼠为实验动物,采用慢速冷冻、快速融解的冷冻技术,比较丙二醇、二甲基亚砜和甘油作冷冻保护剂对小鼠2-细胞、4-细胞、8-细胞胚胎冷冻后胚胎存活率和囊胚形成率的影响。发现以丙二醇和蔗糖为冷冻保护剂冷冻4-细胞、8-细胞胚胎,解冻后胚胎成活率和囊胚形成率显著高于以二甲基亚砜或甘油为冷冻保护剂。结果表明,丙二醇是一种冷冻早期卵裂期小鼠胚胎有效的冷冻保护剂。  相似文献   

9.
共培养体系在牛核移植胚体外发育培养中的应用   总被引:3,自引:0,他引:3  
采用电融合法构建牛体细胞核移植重构胚,分析共培养细胞类型、传代次数、细胞冻-融以及蛋白质添加物(BFF和FBS)对牛体细胞核移植胚体外发育的影响,探讨胚胎体外共培养的条件,以建立优化的共培养体系。结果表明与非共培养组相比,共培养组重构胚的囊胚发育率以及胚胎细胞数显著增加(P<0.05),而输卵管上皮细胞共培养组同颗粒细胞共培养组相比胚胎细胞数显著增加(P<0.05),更适合做共培养细胞;随着共培养细胞传代次数的增加重构胚囊胚发育率及胚胎细胞数显著下降(P<0.05),共培养细胞在冷冻处理后重构胚的囊胚率和胚胎细胞数都显著下降(P<0.05);BFF较FBS更能促进牛核移植胚的囊胚发育率(P<0.05)。表明应用新鲜原代输卵管上皮细胞进行牛核移植胚胎的共培养,并在SOFaa添加10?F能够有效促进核移植胚胎的体外发育。  相似文献   

10.
小鼠原核胚玻璃化冷冻保存技术的研究   总被引:4,自引:0,他引:4  
目的 原核胚是转基因等生物技术所必需的主要材料 ,其冷冻保存使操作不受时间和空间的限制。另外 ,冷冻保存还可以避免体外培养过程中的细胞发育阻断期。方法 在室温 (2 0℃或 2 5℃ )条件下 ,以乙二醇、DMSO为主体抗冻保护剂配制成的玻璃化溶液 (EFS、EDT、EDFS) ,不借助冷冻仪 ,对小鼠原核胚进行一步法和二步法玻璃化冷冻保存。结果  2 0℃室温条件下 ,用EDFS4 0平衡 1min一步法冷冻解冻后的原核胚 ,经培养后囊胚发育率最高仅为 4 7% ,与新鲜原核体外培养的对照组 (75 % )的差异极显著 (P <0 0 1) ;当原核在 10 %E +10 %D溶液中预处理 5min ,移入EDFS30中平衡 30s二步法冷冻保存 ,解冻后的囊胚发育率达 6 8%。而室温升至 2 5℃ ,二步法冷冻保存后原核胚的囊胚发育率高达 77% ,与对照组差异无显著性 (P >0 0 5 )。用最佳冷冻组的原核胚或解冻后培养到囊胚移植给受体母鼠均获得产仔。结论 本研究对小鼠原核胚实施玻璃化冷冻保存 ,经体外培养和移植结果与对照组无显著性差异 ,证明了本方法的可行性  相似文献   

11.
The objective of the study was to evaluate the use of ethylene glycol (EG) for cryopreservation of sheep embryos. A 2 × 2 factorial treatment arrangement examining one-step vs. two-step cryoprotectant addition and removal was used. The one-step cryoprotectant addition involved placement of embryos directly into 1.5 mol EG, whereas the two-step addition utilized an intermediate 10 min exposure to 0.75 mol EG. Similarly, the one-step cryoprotectant removal involved direct placement of thawed embryos into 1.0 mol sucrose, and the two-step procedure included a 10 min exposure to 0.25 mol sucrose before placement in 1.0 mol sucrose. A total of 185 frozen-thawed embryos was placed into in vitro culture for 96 h to determine viability. No differences were observed between cryoprotectant addition or removal techniques, and overall survival was 69%. To validate the results obtained in vitro, a limited number of embryo transfers was performed. Four ewes receiving a total of 11 frozen-thawed embryos produced eight lambs (73% survival) which compared favorably with 74% survival obtained by transferring 19 non-cryopreserved embryos to eight recipients. It is concluded that one-step addition of 1.5 mol ethylene glycol followed by one-step removal in a 1.0 mol sucrose gradient is an appropriate technique for cryopreservation of sheep embryos.  相似文献   

12.
An integrated bovine embryo transfer program was conducted in collaboration with 11 Japanese prefectural livestock experiment stations. The program was conducted to evaluate the practicability of the direct transfer method for bovine embryos frozen-thawed in the presence of propylene glycol (PG) or ethylene glycol (EG) under on-farm conditions. Embryos at the compacted morula to expanded blastocyst stages were collected from superovulated donors on Day 7 or 8 after estrus and equilibrated in 1.6 M PG or 1.8 M EG in Dulbecco's phosphate-buffered saline (DPBS) supplemented with 20% heat-inactivated calf serum. Embryos were then loaded individually into a 0.25-ml straw and placed directly into a cooling chamber of a programmable freezer precooled to -7 degrees C. After 2 min, the straw was seeded, maintained at -7 degrees C for 8 min more, and then cooled to -30 degrees C either at 0.3 degree C/min or 0.5 degree C/min before being plunged into liquid nitrogen. Embryos at the same stages were also frozen in the presence of 1.4 M glycerol (GLY) by a conventional method, which served as a control. The frozen embryos were thawed by allowing the straws to stand in air for 5 to 10 sec and then immersing them in a 30 degrees C water bath. Embryos frozen-thawed in the presence of PG or EG were nonsurgically transferred into the uterine horn without diluting the cryoprotectant. Embryos frozen-thawed in the presence of GLY were nonsurgically transferred after removing GLY either by the stepwise method (GLY-I) or by in situ dilution with 0.3 M sucrose solution (GLY-II). A total of 1,273 (PG: 400, EG: 418, GLY-I: 177, GLY-II; 278) frozen-thawed embryos was transferred into recipients, yielding 545 pregnancies (overall: 42.8%, PG: 36.0%, EG; 44.7%, GLY-I; 48.6%, GLY-II; 46.0%). The pregnancy rate with PG was significantly lower than that with EG or GLY-II (P < 0.05). The pregnancy rate was affected by the type of cryoprotectant, the region where the embryo transfer program was carried out, the developmental stage of the embryos, the parity of the recipients, and corpus luteum (CL) quality of the recipients. There were no differences in rates of abortion and stillbirth among the 3 cryoprotectants. The present study demonstrates that EG can be effectively used as a cryoprotectant for freezing and direct transfer of bovine embryos, and that the direct transfer method is applicable under on-farm conditions.  相似文献   

13.
One-cell mouse embryos were frozen by direct plunging into liquid nitrogen (LN(2)) vapor after equilibration in 3 M ethylene glycol with 0.25 M sucrose (freezing medium) for 5 to 40 minutes. After thawing, the embryos were cultured in vitro and the effects of the equilibration period and dilution method were examined. No significant difference was observed in the in vitro survival of embryos when 0.5 or 1.0 M sucrose was used for the dilution of the cryoprotectant for each equilibration period. The highest survival rate (67.2%) was obtained when the embryos were equilibrated for 10 minutes, and the cryoprotectant diluted with either 0.5 or 1.0 M sucrose after thawing. Shorter (5 minutes) or prolonged (40 minutes) equilibration of embryos in the freezing medium yielded significantly lower survival rates. Dilution by direct transfer of the frozen-thawed embryos into PB1 resulted in lower survival rates than when 0.5 or 1.0 M sucrose was used. The in vitro development to the blastocyst stage of one-cell mouse embryos frozen after 10 minutes equilibration in the freezing medium and diluted after thawing in 0.5 M sucrose was significantly lower than the control (68.0 vs 92.7%). However, transfer of the blastocysts developing from frozen-thawed one-cell mouse embryos into the uterine horns of the recipients resulted in fetal development and implantation rates similar to the control.  相似文献   

14.
Survival of rapidly frozen hatched mouse blastocysts   总被引:1,自引:0,他引:1  
The objective of the present study was to examine the effect of rapid freezing on the in vitro and in vivo survival of zona-pellucida-free hatched mouse blastocysts. Hatched blastocysts were rapidly frozen in a freezing medium containing either ethylene glycol (EG) or glycerol (G) in 1.5 M or 3 M concentration. Prior to freezing, embryos were equilibrated in the freezing medium for 2 min, 10 min, 20 min or 30 min at room temperature. To freeze them, embryos were held in liquid nitrogen vapour [approximately 1 cm above the surface of the liquid nitrogen (LN2)] for 2 minutes and then immersed into LN2. After thawing, embryos were transferred either to rehydration medium (DPBS + 10% foetal calf serum +0.5 M sucrose) for 10 minutes or rehydrated directly in DPBS supplemented with foetal calf serum. In vitro survival of embryos frozen with EG was higher than those frozen with G. The highest survival was obtained with 3 M EG and 2 min or 10 min equilibration prior to freezing, combined with direct rehydration after thawing. Frozen blastocysts developed into normal foetuses as well as unfrozen control ones did, with averages of 30% (control), 26% (EG) and 15% (G). The results show that hatching and hatched mouse blastocysts can be cryopreserved by a simple rapid freezing protocol in EG without significant loss of viability. Our data indicate that the mechanical protection of the zona pellucida is not needed during freezing in these stages.  相似文献   

15.
Ding FH  Xiao ZZ  Li J 《Theriogenology》2007,68(5):702-708
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO+10% PG+10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6+/-16.7% (mean+/-S.D.) and 77.8+/-15.5%, were achieved by the straw vitrifying method (20.5% DMSO+15.5% acetamide+10% PG, thawing at 43 degrees C and washing in 0.5M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation.  相似文献   

16.
Mouse morulae were frozen with 1.5-4.0 M glycerol + 0.25 M lactose solution by direct plunging into liquid nitrogen vapor 0.5-30 min after equilibration at room temperature. After thawing, embryos were cultured in vitro, and the highest survival rates were obtained after exposure for 3 min at 3.0 and 4.0 M and for 5 min at 1.5 and 2.0 M glycerol levels. Significant reductions in the survival rates (P less than 0.05) were observed when equilibration periods were extended for 3-5 min at 3.0 and 4.0 M and for 5-10 min at 1.5 and 2.0 M glycerol levels. These results clearly demonstrate that the equilibration time of embryos in glycerol-lactose mixture is one of the most important factors in the present rapid freezing conditions. To clarify the factors that lower embryo viability after prolonged equilibration, we performed further experiments on the effects of exposure to glycerol-lactose mixture on the developmental potential of embryos without freezing and on the volume changes of embryos during the exposure to glycerol solution with or without lactose. It was suggested that the detrimental effects of prolonged equilibration are due not only to the toxicity and osmotic injury of higher concentrations of cryoprotectant solution but also to the influx of water into embryonic cells caused by the hypotonic salt concentration of the extracellular (freezing) solution.  相似文献   

17.
The aim of the present study was to compare the survival rates of goat morulae and blastocysts after different freezing procedures. The viability of frozen-thawed embryos was assessed both in vivo and in vitro. Two cryoprotectants, ethylene glycol and glycerol, were used and three cryoprotectant removal procedures were compared: progressive dilution in 1.0, 0.5, 0.3 and 0 M of cryoprotectant in PBS; a similar progressive dilution with cryoprotectant in PBS plus 0.25 M of sucrose; or one-step transfer in PBS containing 0.25 M of sucrose. In vitro development of frozen-thawed blastocysts was always higher than that of frozen morulae irrespective of the cryoprotectant (52 129 = 40.3% vs 23 161 = 14.3% ; P< 0.001). In vivo, however, frozen-thawed morulae developed equally as well as blastocysts after an identical freezing-thawing protocol. Development both in vivo and in vitro showed ethylene glycol to be a better cryoprotectant than glycerol for goat embryos at both developmental stages (23 vs 0%, 45 vs 35% in vitro; 34.5 vs 21%, 35 vs 23% in vivo for morulae and blastocysts, respectively).  相似文献   

18.
Vitrification of in vivo and in vitro produced ovine blastocysts.   总被引:2,自引:0,他引:2  
Although cryopreservation of bovine embryo has made great progress in recent years, little achievement was obtained in ovine embryo freezing, especially in vitro produced embryos. However, a simple and efficient method for cryopreservation of sheep embryos will be important for application of ovine embryonic techniques such as in vitro fertilization, transgenic, cloning and etc. In this study ovine blastocysts, produced in vivo or in vitro, were cryopreserved by vitrification in EFS40 (40% ethylene glycol (EG), 18% ficoll and 0.5 M sucrose) or GFS40 (40% glycerol (GL), 18% ficoll and 0.5 Mol sucrose). In vitro produced, early blastocysts were directly plunged into liquid nitrogen (LN2) after preparation by one of the following procedures at 25 degrees C: (A) equilibration in EFS40 for 1 min; (B) equilibration in EFS40 for 2 min; (C) equilibration in EFS40 for 30 s following pretreatment in 10% EG for 5 min; (D) equilibration in EFS40 for 30 s following pretreatment in EFS20 for 2 min (E) equilibration in GFS30 for 30 s following pretreatment in 10% GL for 5 min. The survival rates observed after thawing and in vitro culture for 12 h were A 78.0% (39/50), B 50.0% (26/52), C 93.3% (70/75), D 92.0% (46/50) and E 68.0% (34/50). Survival rates were not significantly different for treatments C and D (p>0.05), but those for groups C and D were significantly higher than for A, B and E (p<0.05). After 24 h in vitro culture, hatched blastocyst rates were A 28.0% (14/50), B 21.1% (11/52), C 49.3% (37/75), D 48.0% (24/50), E 32.0% (16/50) and control 54.0% (27/50). The hatching rates for groups A, B and E were significantly lower than the control (p<0.05) in which early IVF blastocysts were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min, but for groups C and D it was similar to the control (p>0.05). The freezing procedures A, B and C were used to vitrify in vivo produced, early blastocysts recovered from superovulated ewes. The survival rates of frozen-thawed in vivo embryos were A 94.7% (72/76), B 75.0% (45/60) and C 96.4% (54/56) and for group B was significantly lower than for the other two treatment groups (p<0.05). Hatched blastocyst rates were A 46.0% (35/76), B 26.6% (16/60), C 51.8% (29/56) and the control 56.7% (34/60) in which early blastocysts from superovulation were cultured in fresh SOFaaBSA medium following treatment in PBS containing 0.3% BSA for 30 min. The hatching rate for treatment B was significantly lower than for the control (p<0.05) but did not differ between groups A, C and the control (p>0.05). Frozen-thawed embryos vitrified by procedure C were transferred into synchronous recipient ewes. Pregnancy and lambing rates were similar for embryos transferred fresh or frozen/thawed for both in vivo and in vitro produced embryos. These rates did not differ between in vivo and in vitro embryos transferred fresh (p>0.05). However, for frozen-thawed embryos, both rates were significantly lower for in vitro than for in vivo produced embryos (p<0.05).  相似文献   

19.
For the purpose of ascertaining parameters to embryo transfer on some domestic animals, mouse morulae were used as a model to investigate the effect of in-straw thawing on in vitro and in vivo-development of vitrified embryos. Embryos were vitrified in 0.25 ml straws preloaded with dilution solution (0.5 M Sucrose) and thawed in the straw by mixing the vitrification solution (Ethylene glycol + Ficoll 70 + Sucrose) and the dilution solution at 25 degrees C. The embryos were randomly divided into six groups and expelled from the straws after they had been suspended in the in-straw mixture for 3 min, 5 min, 8 min, 12 min, 16 min, and 20 min, respectively, and then they were collected under a microscope for in vitro culture or direct transfer. The in vitro developmental rates of the embryos were 92.3% to 98.4% and hatching rates were 64.1% to 75.6% for the groups of 3 min to 16 min, showing no significant differences with those of nonfrozen controls (100%, 76.2%; P > 0.05). While embryos were suspended in the straw for 20 min, the developmental rate (86.6%) and hatching rate (52.4%) were significant lower than those of the control (100%, 76.2%; P < 0.01). When the 168 frozen-thawed embryos (in-straw thawing for 5 min) and 168 fresh embryos were transferred, respectively, the proportion of live fetuses in the pregnant recipients between them (58.7% vs. 54.5%) showed no significant difference (P > 0.05). The data indicate that vitrification with EFS30 and suspension in the in-straw mixture for 3 min to 16 min, when thawing, did not affect the in vitro developmental rate and hatching rate. Moreover, the in vivo developmental rate between vitrified embryos and fresh embryos did not differ significantly. It can be concluded that this method is fit for nonsurgical embryo transfer in some domestic animals with a suggestion that the operation of embryo transfer should be accomplished within 16 min.  相似文献   

20.
Nowshari MA  Ali SA  Saleem S 《Theriogenology》2005,63(9):2513-2522
The dromedary embryos, collected at hatched blastocyst stage, survived freezing and thawing in the presence of a high concentration of ethylene glycol (7.0 mol/L) with sucrose (0.5 mol/L) and direct plunging in liquid nitrogen. The rate of survival, as judged by the morphological appearance of the embryos after thawing, was high (92%). The transfer of frozen-thawed embryos into the recipients during the breeding (n=20) and non-breeding season (n=25) resulted in two and one pregnancy, respectively. One of the two pregnant recipients, with embryos transferred during the breeding season, delivered a normal healthy male calf at term. To our knowledge, this offspring is the first camelid produced following transfer of a frozen-thawed embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号