首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
抗菌肽具有抗菌谱广、热稳定性强、分子量小及免疫原性小等特点,其杀菌机制独特,病原菌不易产生耐药性,有望开发成新一代肽类抗生素。本文主要综述了影响抗菌肽生物活性的生化性质,即螺旋度、疏水性、两亲性、正电荷数等,并从结构的角度论述了其对抗菌肽抑菌活性的影响。部分抗菌肽具有空间结构不稳定、溶血活性等缺点,限制了其临床应用。因此,对天然抗菌肽的改造也成为目前抗菌肽的研究热点,本文还综述了天然抗菌肽的改造方法。  相似文献   

2.
含有Fxa切割位点的抗菌肽X在大肠杆菌中的融合表达   总被引:3,自引:0,他引:3  
抗菌肽是昆虫体液免疫的重要成分[1,2 ] ,它们的分子量较小 ,具有抗菌、抗病毒和杀伤某些肿瘤细胞的功能 ,而不破坏人体正常细胞。基于它的这种选择性效应和分子小、无抗原性的特点 ,可望成为新一代的抗菌、抗肿瘤药物。然而 ,天然抗菌肽来源十分困难 ,不能满足研究和临床应用的需要 ,通过基因工程技术生产抗菌肽已成为人们普遍关注的焦点。抗菌肽CMIV是从家蚕蛹中分离并测定了其一级结构的新型抗菌肽 ,它由 35个氨基酸组成 ,不含甲硫氨酸 ,C 末端为酰胺[3 ] 。抗菌肽X是中国家蚕抗菌肽CMIV的变体 ,其一级结构与天然的抗菌肽CM…  相似文献   

3.
抗菌肽作为最有潜力的抗生素替代药物,其临床应用和商品化生产还十分有限。科研人员采用各种方法克服这些障碍,如引入稀有氨基酸或多肽模拟的技术以避免抗菌肽的水解,或设计更短的多肽在保持其活性的同时降低生产的成本,这些手段均基于对抗菌肽结构的了解。可见,研究抗菌肽的分子结构对改进其功能必不可少,本文将介绍抗菌肽结构与功能的关系。  相似文献   

4.
中国产家蚕抗菌肽A基因部分序列的测定   总被引:2,自引:0,他引:2       下载免费PDF全文
从大肠杆菌感染的家蚕蛹提取RNA,用RT-PCR方法扩增未知抗菌肽基因片段,经过克隆测序,获得了蚕抗菌肽A基因的部分片段164 bp,为制备蚕抗菌肽A基因探针,筛选基因文库打下了基础.  相似文献   

5.
[目的]为了发现新的农作物病原菌抗菌肽,人工设计并构建了大容量短肽文库,从中筛选并合成96条短肽用于鉴定其对农作物病原菌的抑菌活性.[方法]采用琼脂扩散法,对靶标菌一棉花枯萎病菌(Fusarium f.sp.vasinfecum)、棉花红腐病菌(Fusarium moniliforme)、小麦根腐病菌(Bipolaris sorokiniana)和马铃薯早疫病菌(Alternaria solani)进行抑菌初筛,并测定了有抗菌作用短肽的最小抑菌浓度和抑菌持久性.[结果]得到了A6、D4和F10对上述四种病原真菌抑菌效果较强,抑菌时间较长的抗菌肽,通过与抗菌肽数据库氨基酸序列对比,未见这3条抗菌肽的同源序列.[结论]研制的3条短肽属于新颖抗菌肽,为防治农作物真菌病害提供了新的基因资源.  相似文献   

6.
基因工程菌生产抗菌肽的研究进展   总被引:2,自引:0,他引:2  
目前,利用基因工程菌生产抗菌肽,提供有效和稳定的方法是抗菌肽生产的热点之一。了解抗菌肽工程菌表达系统、生产量尤为重要,为此本文阐述了抗菌肽的生产方式,介绍了基因工程菌表达系统的种类、组成及特点,分析了基因工程菌生产抗菌肽的主要困难因素,并对近些年利用基因工程菌生产抗菌肽的进展进行了综述。  相似文献   

7.
昆虫是地球上种类最为繁多的生物,其抗菌肽的种类和应用范围也远多于其他生物产生的抗菌肽。随着越来越多昆虫抗菌肽的发现及对其深入的研究,昆虫抗菌肽的结构和作用机制也被逐一阐明,并广泛应用于畜牧、食品工业及医药等领域。然而,由于某些限制因素,昆虫抗菌肽还未应用于临床。为了加快昆虫抗菌肽在临床中的应用,本文将从昆虫抗菌肽的结构分类、潜在的医学应用以及昆虫抗菌肽的生产研究现状等方面作一综述,以期为昆虫抗菌肽在抗细菌、抗病毒、抗肿瘤及抗寄生虫药物等方面的医用研发提供文献支持。  相似文献   

8.
抗菌肽临床应用前景分析   总被引:2,自引:0,他引:2  
抗菌肽是生物天然免疫的重要组成部分,几乎存在于所有种类的生物中。目前已发现的抗菌肽超过2 000种。抗菌肽具有广谱抗菌活性,对大多数革兰氏阳性菌、革兰氏阴性菌和真菌具有强大的抑制作用(包括多药物耐受微生物),而且这种作用具有较好的选择性。这些特点使抗菌肽具有成为抗感染药物的重大潜力;但抗菌肽的临床应用也面临着一些困难,如抗菌肽大量生产、体内稳定性、微生物耐受等。对抗菌肽临床应用面临的问题及正在进行临床研究和临床前研究的抗菌肽做一简要综述。  相似文献   

9.
抗菌肽因其具有广谱抗菌活性、不容易引起抵抗性,被认为是先天免疫系统对抗微生物感染的多功能工具。然而,天然抗菌肽存在抗菌活性低、稳定性低、溶血性高等问题,使其较难应用于临床,所以研究人员对抗菌肽进行改良设计以期获得更高抗菌活性、更低溶血活性的新型抗菌肽。另外,天然抗菌肽作为一类免疫效应因子而被发现,其表现出的抑菌、免疫调节、内毒素中和等作用,使得研究人员对抗菌肽在抗炎作用的研究表现出极大的兴趣。就抗菌肽的药物设计方法及抗炎作用机制进行综述。  相似文献   

10.
抗菌肽及其临床应用研究进展   总被引:1,自引:0,他引:1  
抗菌肽是生物体在抵抗病原微生物的防御反应过程中产生的一类具有抗微生物活性的小分子多肽。抗菌肽是机体天然免疫系统的重要组成部分,具有广谱的抗革兰氏阳性、阴性菌活性,对真菌、某些有包膜的病毒、寄生虫以及肿瘤细胞也有抑制活性。抗菌肽具有不同于传统抗生素的独特抗菌机制,病原菌不宜对其产生耐药性,有可能成为一种新的抗生素替代品。介绍了抗菌肽的来源与分类、理化特性与生物学活性,并重点阐述其最新的临床应用进展。  相似文献   

11.
The increased resistance of various bacteria toward available antibiotic drugs has initiated intensive research efforts into identifying new sources of antimicrobial substances. Short antibiotic peptides (10-30 residues) are prevalent in nature as part of the intrinsic defense mechanisms of most organisms and have been proposed as a blueprint for the design of novel antimicrobial agents. Antimicrobial peptides are generally believed to kill bacteria through membrane permeabilization and extensive pore-formation. Assays providing rapid and easy evaluation of interactions between antimicrobial membrane peptides and lipid bilayers could significantly improve screening for substances with effective antibacterial properties, as well as contribute to the elucidation of structural and functional properties of antimicrobial peptides. Here we describe a colorimetric sensor in which particles composed of phospholipids and polymerized polydiacetylene (PDA) lipids were shown to exhibit striking color changes upon interactions with antimicrobial membrane peptides. The color changes in the system occur because of the structural perturbation of the lipids following their interactions with antimicrobial peptides. The assay was also sensitive to the antibacterial properties of structurally and functionally related peptide analogs.  相似文献   

12.
A high throughput method for screening cDNA libraries has been developed to identify putative antimicrobial peptides (AMPs). It is based on a rapid dye inclusion assay for assessing antagonism of bacterial viability. Colonies are grown on a membrane on a permissive medium until full colony size is reached. The membrane, supporting the array of colonies, is transferred onto an inductive medium containing a vital dye. Upon expression of any antagonizing peptides, the cell membrane becomes compromised allowing dye infusion to permit visual identification of deleterious peptides. Our approach was validated by screening a synthetic oligonucleotide library expressed in Escherichia coli. A random oligonucleotide library, containing inserts of up to 75 nucleotides in length was constructed and expressed in E. coli. From a potential pool of 100000 peptides, in a single round of screening, three were found to be antimicrobial: L1, L3, and L8. Peptide L1 was shown to have a concentration-dependent bactericidal effect against Gram-negative E. coli and moderate biostatic activity against the Gram-positive bacteria Listeria monocytogenes. L8 was found to have bacteriostatic, and possibly bactericidal effect against E. coli, Pseudomonas aeruginosa and Salmonella typhimurium. These results validated this high throughput AMP identification assay based on filter bound colony array libraries and vital dye inclusion.  相似文献   

13.
Antimicrobial peptides have captured the attention of researchers in recent years because of their efficiency in fighting against pathogens. These peptides are found in nature and have been isolated from a wide range of organisms. Furthermore, analogs or synthetic derivatives have successfully been developed on the basis of natural peptide patterns. Long use of pesticides and antibiotics has led to development of resistance among pathogens and other pests as well as increase of environmental and health risks. Antimicrobial peptides are under consideration as new substitutes for conventional pesticides and antibiotics. Many plants and animals have been manipulated with antimicrobial peptide-encoding genes and several pesticides and drugs have been produced based on these peptides. Such strategies and products may still have a long way to go before being confirmed by regulatory bodies and others need to surmount technical problems before being accepted as applicable ones. In spite of these facts, several cases of successful use of antimicrobial peptides in agriculture and food industry indicate a promising future for extensive application of these peptides. In this review, we consider the developing field of antimicrobial peptide applications in various agricultural activities.  相似文献   

14.
Antimicrobial peptides from amphibian skin: an expanding scenario   总被引:10,自引:0,他引:10  
Many organisms employ antimicrobial peptides to fend off microbial pathogens. Amphibian skin is one of the most generous sources of these peptides. In the past couple of years, intriguing additional insights on various aspects of frog skin peptides have been reported. Several novel molecules, often with unprecedented structural features, have been discovered. Studies focusing on the factors that regulate the in vivo synthesis of skin peptides in response to infection have gained in prominence. Moreover, recent results indicate new possibilities for the development of effective human therapeutics based on antimicrobial peptides and partially disclosed the biotechnological potential of these molecules.  相似文献   

15.
Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs) mostly target the cell wall, a microbial ‘Achilles heel’, it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient ‘weapons’ of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs) do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the ‘Achilles heel’ has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.  相似文献   

16.
A novel antimicrobial peptide derived from ovalbumin has been discovered. First, the peptide fragment RKIKVYLPRMK (TK9.1) was identified based on computerized predictions of the secondary structure of peptides in a protein data bank. Using HeliQuest, the sequence was developed into RKIKRYLRRMI (TK9.1.3), which was synthesized using Fmoc‐solid phase peptide synthesis, and found to have strongly antimicrobial activity against Gram‐positive and Gram‐negative bacteria, and fungi but not cytotoxic to HeLa cells and hemolysis in mouse red blood cells. Although ovalbumin itself does not have an antibacterial activity, our results suggest that it may supply the organisms that consume it with antimicrobial peptides, in support of their immunodefence.  相似文献   

17.
Antimicrobial peptides have been found throughout living nature, yet antimicrobial sequences may still lie hidden within a wide variety of proteins. A rational strategy was developed to select interesting domains, based on the presumed common features of antimicrobial peptides, and to release these from accessible and safe proteins. In silico proteolysis simulations of bovine lactoferrin (bLF) with selected endoproteinases predicted the liberation of peptides that encompasses a cationic amphipathic alpha-helix. Three predicted peptides were synthesized and tested for their biological activity, demonstrating that one single enzyme was sufficient to obtain an antimicrobial peptide. The proof of principle demonstrated that a 32-mer fragment isolated from the endoproteinase AspN digestion of bLF possessed strong antimicrobial activity. Moreover, desalted crude digest had improved activity over native bLF. Hence, selective digestion of bLF increases its antimicrobial activity by release of antimicrobial stretches.  相似文献   

18.
Experimental evolution of resistance to an antimicrobial peptide   总被引:2,自引:0,他引:2  
A novel class of antibiotics based on the antimicrobial properties of immune peptides of multicellular organisms is attracting increasing interest as a major weapon against resistant microbes. It has been claimed that cationic antimicrobial peptides exploit fundamental features of the bacterial cell so that resistance is much less likely to evolve than in the case of conventional antibiotics. Population models of the evolutionary genetics of resistance have cast doubt on this claim. We document the experimental evolution of resistance to a cationic antimicrobial peptide through continued selection in the laboratory. In this selection experiment, 22/24 lineages of Escherichia coli and Pseudomonas fluorescens independently evolved heritable mechanisms of resistance to pexiganan, an analogue of magainin, when propagated in medium supplemented with this antimicrobial peptide for 600-700 generations.  相似文献   

19.
Antimicrobial peptides: properties and applicability   总被引:8,自引:0,他引:8  
All organisms need protection against microorganisms, e. g. bacteria, viruses and fungi. For many years, attention has been focused on adaptive immunity as the main antimicrobial defense system. However, the adaptive immune system, with its network of humoral and cellular responses is only found in higher animals, while innate immunity is encountered in all living creatures. The turning point in the appreciation of the innate immunity was the discovery of antimicrobial peptides in the early eighties. In general these peptides act by disrupting the structural integrity of the microbial membranes. It has become clear that membrane-active peptides and proteins play a crucial role in both the innate and the adaptive immune system as antimicrobial agents. This review is focused on the functional and structural features of the naturally occurring antimicrobial peptides, and discusses their potential as therapeutics.  相似文献   

20.
抗菌肽基因工程研究及其表达策略   总被引:13,自引:1,他引:12  
抗菌肽广泛存在于多种生物体内,具有广谱抗菌、调节免疫、抑制肿瘤等多种生物学功能,作用机制独特,是目前基因工程研究的热点之一。本文综述了抗菌肽的一般性质及其国内外基因工程研究进展,探讨了在抗菌肽转基因研究中采用的表达策略及理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号