首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了从大量的候选菌株中快速筛选头孢菌素酰化酶产生菌,设计并合成了一系列头孢菌素酰化酶的底物类似物。这些酰胺类的底物类似物由二部分组成,一部分为与头孢菌素相同或相似的侧链,另外一部分为发色基团或便于检测的基团。它们被酰化酶水解酰胺键以后可以方便快速的检测,因此用于对大量菌株进行快速筛选。采用这些化合物筛选到6株酰化酶阳性菌株。其中菌株ZH0650能够同时水解GL7ACA和多个底物类似物。进一步研究表明,该菌至少产生3种酰化酶,ADNABA酰化酶,青霉素G酰化酶和头孢菌素C酰化酶。我们初步纯化了ADNABA酰化酶和青霉素G酰化酶,并对头孢菌素C酰化酶的活力进行了鉴定。这是首次报道的可以产生青霉素G酰化酶和头孢菌素酰化酶等多种酰化酶的菌株,具有良好的应用前景。  相似文献   

2.
一株产多种β-内酰胺类抗生素酰化酶菌株的筛选   总被引:1,自引:0,他引:1  
为了从大量的候选菌株中快速筛选头孢菌素酰化酶产生菌,设计并合成了一系列头孢菌素酰化酶的底物类似物。这些酰胺类的底物类似物由二部分组成,一部分为与头孢菌素相同或相似的侧链,另外一部分为发色基团或便于检测的基团。它们被酰化酶水解酰胺键以后可以方便快速的检测,因此用于对大量菌株进行快速筛选。采用这些化合物筛选到6株酰化酶阳性菌株。其中菌株ZH0650能够同时水解GL-7ACA和多个底物类似物。进一步研究表明,该菌至少产生3种酰化酶,AD-NABA酰化酶,青霉素G酰化酶和头孢菌素C酰化酶。我们初步纯化了AD-NABA酰化酶和青霉素G酰化酶,并对头孢菌素C酰化酶的活力进行了鉴定。这是首次报道的可以产生青霉素G酰化酶和头孢菌素酰化酶等多种酰化酶的菌株,具有良好的应用前景。  相似文献   

3.
尖镰孢胞外青霉素V酰化酶的产生   总被引:1,自引:0,他引:1  
冯瑛  崔福绵   《微生物学通报》1996,23(6):329-332
由腐殖土中分离出一株产胞外青霉素V酰化酶的尖镰孢(Fusariumoxysporum),编号FP941。研究了该菌在液体培养基中产胞外青霉素V酰化酶的条件。在以10%麦麸为碳源的培养基中,添加氮源能促进酶的形成。无机氮源优于有机氮源。(NHHPO的促进效果最佳,草酸铵次之,用量均为1%。为提高产酶量,培养基中添加诱导物是必要的、苯氧乙酸的诱导效果最佳,用量为0.1%,其次是青霉素V,用量为0.3%。最适培养条件为:培养  相似文献   

4.
为筛选较优的产青霉素酰化酶的菌种,我们从9个属的232株纽菌中选出了19株产青霉素酰化酶的大肠杆菌,其中,AS 1.76和E 110为最好。还对大肠杆菌AS 1.76的产酶条件进行了研究。结果表明,最适的培养基成分是(%):蛋白胨l,苯乙酸0.2,玉米浆0.3,氯化钠0.5;在250毫升的三角瓶中装30毫升培养基时,通气量正合适:培养基的初始pH以7.0为佳;培养时间15小时。在未加玉米浆的培养基中,少量的Fe2+(5馓克/毫升)对酶形成有刺激作用,过量的Fe2+(大于10教克/毫升)是不利的;在培养基中添加0.3%的玉米浆能降低Fe2+对酶形成毒害作用。  相似文献   

5.
含有大肠杆菌青霉素G酰化酶基因的质粒pWGA在菌株DH5α中表达时,表现为温度敏感。在30℃和37℃两种培养温度下,用Northern Blot和Western Blot研究了菌体的转录水平和翻译水平。结果表明菌体培养温度升高不影响mRNA的转录,但不利于青霉素酰化酶前体蛋白的正确加工,导致青霉素酰化酶在37℃发酵生产时酶活力单位的下降。  相似文献   

6.
用固定化青霉素酰化酶连续生产6-氨基青霉烷酸(简称6-APA)已有许多报道。近年来关于固定化微生物细胞的研究不断发展。Sato等曾用固定化的产青霉素酰化酶的细胞连续生产6-APA。我们用双功能试剂戊二醛固定化大肠杆菌AS 1.76的青霉素酰化酶,用来水解青霉素G生产6-APA。现将结果报告如下。  相似文献   

7.
高表达的基因工程菌大肠杆菌A56(pPA22)青霉素化酶基因表达对温度敏感。在37℃几乎不产生青霉素酰化酶,在28℃以下积累青霉素酰化酶,合成酶的最适温度为20—22℃,产量可达250u,100ml。当用DNA—RNA点滴杂交法定量分析RNA时,发现在37℃培养的细胞中不积累青霉素化酶mRNA,而22℃培养的细胞中相应mRNA的量是28℃培养的细胞中的5倍。同一质粒pPA22上的氯霉素乙酰转移酶的mRNA在三种温度培养的细胞中的。浓度相同。将37℃培养的细胞转移到22℃继续培养,当菌体不继续增殖时,细胞内仍无青霉素酰化酶及其mRNA的积累。上述结果表明温度在转录水平上专一地调控了青霉素酰化酶基因的表达,在37℃长时期培养的细胞中青霉素酰化酶基因被永久地关闭。  相似文献   

8.
用EcoR I—Pst I双酶解的pBR322作为克隆载体,从大肠杆菌D816染色体克隆了青霉素酰化酶基因,这个基陶位于9.1Kb EcoRI片段上。所得克隆株整体细胞酶学特性与大肠杆菌D816一致,酶反应最适温度为55℃,最适pH为7.8—8.0。以青霉素G作为底物时Km为10.3mM,转化产物为6一氨基青霉烷酸。克隆株大肠杆菌c600(pPAl)合成青霉索酰化酶仍需苯乙酸诱导并被葡萄糖阻遏,细胞青霉素酰化酶的活性比大肠杆菌c P1(高2—4倍。  相似文献   

9.
青霉素在临床上的大量使用造成了细菌的耐药性增强,青霉素本身又具有不宜口服、过敏性强等缺点,人们正致力于研究有诸多优良特性的半合成青霉素。大肠杆菌青霉素酰化酶用于裂解青霉素生产6-氨基青霉烷酸(即6-APA,半合成青霉素的重要中间体),该酶的提取、纯化和固定化研究在半合成青霉素工业有重要的意义[1]。大肠杆菌青霉素酰化酶属胞内酶,文献报道多采用超声波法提取,该法得到的粗酶液比活低,一般要经过四、五步纯化才能得到较高比活[2,3,4]的酶液。采用渗透压冲击法提取青霉素酰化酶,得到的粗酶液比活高,只需经过硫酸铵沉淀一步纯化就…  相似文献   

10.
青霉素G酰化酶是近几十年来β内酰胺类抗生素领域应用最广、开发最成功的酶之一。伴随着β-内酰胺类抗生素由化学合成法变更为酶法在中国的大规模产业化,得到了充分的开发与应用,取得了成功。青霉素G酰化酶不但用于水解制备6-APA、7-ADCA,更重要的是用于氨苄西林、头孢氨苄、阿莫西林、头孢拉定、头孢克洛等抗生素的制备。本文综述了近15年青霉素G酰化酶在我国研究与应用的历史沿革、基因与蛋白质结构、工业应用表达体系、工业评价标准与进化研究,还对各种突变株在具体医药工业领域的开发应用进行了综述,旨在梳理青霉素G酰化酶结构与性能的进化趋势以及在医药工业领域取得的巨大成就,同时也为相关人员在此领域进行深耕提供参考。  相似文献   

11.
采用青霉素梯度琼脂平皿筛选法,利用对青霉素G高抗性表型,专一筛选大肠杆菌青霉素酰化酶高产突变株。一次涂皿可淘汰绝大部分未突变株。我们从青霉素G梯度琼脂平皿上获得528株,从中得到32株产酰化酶活性高于出发菌株的正突变株,正突变率为6.06%,最高突变幅度为96.6%。  相似文献   

12.
刘建国  杨秀琴  吴径才   《微生物学通报》1989,16(5):298-299,281
采用青霉素梯度琼脂平皿筛选法,利用对青霉素G高抗性表型,专一筛选大肠杆菌青毒素酰化酶高产突变株。一次涂皿可淘汰绝大部分未突变株。我们从青霉素G梯度琼脂平皿上获得528株,从中得到32株产酰化酶活性高于出发菌株的正突变株,正突变率为6.06%,最高突变幅度为96.6%。  相似文献   

13.
固定化青霉素酰化酶的研究   总被引:11,自引:4,他引:7  
将巨大芽孢杆菌胞外青霉素酰化酶通过共价键连接到醋酸纤维素载体上,制成的固定化青霉素酰化酶的表观活力达2000 u/g左右(PDAB法)。水解lO%(w/v)的青霉素G钾盐落液,使用30批,保留活力70%以上。6-氨基青毒烷酸(6-APA)总收率平均达88.37%。固定化青霉素酰化酶水解青霉素G的最适pH为9.95,最适温度为55℃,表观米氏常数为1.093×10-2mol/L,在pH 5.8-10.7,温度45℃以下酶的活力稳定。  相似文献   

14.
选用带青霉素酰化酶基因的HindI—A片段或HindI—A及其邻接的HindI—B,c片段的4种不同的质粒pPA2,pPA4,pPA 5,pPA 6分别转化于4种大肠杆菌宿主A56,c600,HBl01,Mcl000得16种转化子并测这些转化子的青霉素酰化酶活力。结果表明:同一质粒在不同宿主中青霉素酰化酶基因表达程度有明显差别,其中以A56为最高,其次是c600和Mcl000,而以HBl01为最低。在所试验的4个宿主菌中青霉素酰化酶基因表达都具温度依赖性,而且HindI—B片段对表达有相同程度的促进作用。用DNA-RNA点滴杂交试验测定青霉素酰化酶的信使RNA的量,发现同一质粒在不同宿主中信使RNA量的差异与酶活力的差异相一致。上述结果表明宿主在转录水平上影响了青霉素酰化酶基因的表达。  相似文献   

15.
目的:对重组大肠杆菌组成型表达粪产碱杆菌青霉素G酰化酶(AfPGA)进行了发酵条件研究。方法:在摇瓶和5L发酵罐中研究了(NH4)2SO4和葡萄糖浓度对质粒的分离稳定性及青霉素G酰化酶表达的影响。结果:该工程菌质粒具有分离不稳定性,培养基中无(NH4)2SO4时发酵过程中pH和糊精水解生成葡萄糖的浓度变化较小,细胞前期(0h-12h)的生长速率降低,质粒分离稳定性和青霉素G酰化酶的表达水平提高。发酵过程中维持低葡萄糖水平可以限制细胞的生长速率,提高质粒稳定性和促进青霉素G酰化酶的合成。采用混合碳源发酵,发酵培养基含糊精2g/L,12h后以1g/L.h恒速流加葡萄糖至35h,控制流加过程葡萄糖浓度0.1g/L左右,平均比生长速率为0.06h-1,发酵结束时质粒稳定性为86%,青霉素G酰化酶的表达水平达23 000U/L。结论:重组大肠杆菌组成型表达青霉素G酰化酶的研究对工业生产有一定指导意义。  相似文献   

16.
巨大芽孢杆菌青霉素G酰化酶共价结合在新型环氧-氨基型载体ZH-HA 上,通过对酶浓度、固定化时间、pH以及缓冲液浓度等条件的考察,确定了最优固定化条件:50 mg比活力6000 U/g的巨大芽孢杆菌青霉素G酰化酶蛋白和1g ZH-HA悬浮于pH 9.01 mol/L磷酸缓冲液,室温搅拌6 h,制得固定化巨大芽孢杆菌青霉素G酰化酶,活力2126 U/g湿载体,活力回收率7.67%.比较研究了固定化酶与原酶性质,原酶最适温度45℃,最适pH为8.0.固定化酶则分别是50℃和9.0,分别比溶液酶偏移5℃、1.0个pH单位.经过40批连续水解青霉素G钾盐,固定化巨大芽孢杆菌青霉素酰化酶仍保持80%的活力,显示出良好的工作稳定性.  相似文献   

17.
大肠杆菌AE109青霉素G酰化酶的分离纯化及性质研究   总被引:1,自引:0,他引:1  
 由发酵培养液所得大肠杆菌AE109菌体,先经高渗休克处理,继经D-苯甘氨酸-Sepharose 4B和DEAE-纤维素柱层析分离纯化得到青霉素G酰化酶,酶制品在非变性条件下的聚丙烯酰胺凝胶电泳上呈一条区带,而且可以结晶。在SDS变性条件下解离为α和β两个亚基。 酶性质的研究结果表明,由大肠杆菌工程菌AE109菌株所得青霉素G酰化酶与其亲本大肠杆菌AS1.76菌株所得青霉素G酰化酶性质相同。  相似文献   

18.
19.
高产青霉素酰化酶的大肠杆菌细胞用明胶包埋,并由戊二醛将其固定。这种固定化细胞用来连续水解苄基青霉素,在37℃使用103天没有发现损失酶活性。它们已被用于6-氨基青霉烷酸的工业生产,效果令人满意。在七个半月内使用285次,水解速率没有明显下降。研究了固定化大肠杆菌细胞的酶性质,并与相应的天然细胞作了比较。发现固定化细胞的青霉素酰化酶比天然细胞的更稳定。  相似文献   

20.
用固定化细胞裂解苄基青霉素制备6-氨基青霉烷酸   总被引:2,自引:1,他引:1  
高产青霉素酰化酶的大肠杆菌细胞用明胶包(?),并由戊二醛将其固定。这种固定化细胞用来连续水解苄基青霉素,在37℃使用103天没有发现损失酶活性。它们已被用于6-氨基青霉烷酸的工业生产,效果令人满意。在七个半月内使用285次,水解速率没有明显下降。研究了固定化大肠杆菌细胞的酶性质,并与相应的天然细胞作了比较。发现固定化细胞的青霉素酰化酶比天然细胞的更稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号