首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
质粒pBR322用HindⅢ—BarnH Ⅰ双酶切作为载体,从质粒pPAd上克隆含有pac操纵基因的HindⅢ一。BglⅡl.65kb的DNA片段,得到质粒pPA41。质粒pBR322和pPA41转化染色体上含有完整pac操纵子的大肠杆菌D816,进行操纵基因滴定。大肠杆菌D816、D816(pPA4l).D816(pBR322)在22℃摇瓶发酵96h,NIPAB法测定青霉素酰化酶活性。结果发现,在不加诱导剂时,D816(pPA41)产生的青霉素酰化酶是D816细胞的2.5倍,在加诱导剂时,D816(pPA41)产生的青霉素酰化酶是D816细胞的1.3倍。对照组D816(pBR322)细胞产生的青霉素酰化酶和:D816细胞产生的几乎一致,说明质粒pPA41的竞争滴定作用确是其上克隆的操纵基因引起的。高拷贝的操纵基因(pPA41)和pac操纵子竞争结合调节蛋白,使得pac操纵子表达增加,说明调节蛋白在pac操纵子表达过程中起阻遏作用,调节蛋白为阻遏蛋白,pac操纵子为负调控模型。R.NA—DNA点杂交检测pac基因表达,发现D816(pPA41)细胞转录产生的pac—mRNA量明显高于D816细胞,mRNA量和青霉素酰化酶活性呈现一致的趋势,证实了pac操纵子的负调控发生在转录水平。  相似文献   

2.
前文报道重组质粒pPAl中9.1kb的EcoRI片段上带青霉酰化酶基因。用16种限制性内切酶消化pPAl,其中ApaI,KpnI,SacI,SacI,SmaI及XhoI等六种内切酶在pPAl上无切口; BamHI,ClaI,Sph I,BglI为单切口;Sal为双切口,AvaI,HindI及PvuI为三切口,EcoRV为五切口。经交叉双酶解法测定各片段的大小,作出质粒pPAl的限制性酶切图。在包含青霉素酰化酶基因的9.1kbEcoRI片段上,BglI有一个切口,AvaI,HindI 及PvuI都有两个切口,而EcoRV有四个切口,SalI,BamHI,ClaIKSphI不切9.1kb的EeoR I片段。HindI切9.1kb EcoR I片段为A(3.5kb),B(2.7kb)及C(2,9kb)等三个片段。经Hind I部分水解后连接,转化大肠杆菌HB101得到一系列带不同Hind 1片段的质粒的转化子,青霉素酰化酶活性测定证明其基因位于Hin d II—A片段上。合成青霉素酰化酶仍需苯乙酸诱导,并被葡萄糖阻遏,Hind I—B片段的存在能增加青霉素酰化酶基因的表达,而c片段无显著影响。  相似文献   

3.
青霉索酰化酶基因(pac)的定位研究表明它的调节基因和结构基因位于3.5kb的HindI—EcoR I片段。本文报道构建一系列质粒pPA 6的缺失衍生物,并测定这些缺失对pac表达的影响。结果表明调节基因位于pac结构基因内的spb I—Pvu I片段。SphⅠI—PvuⅡ片段克隆到质粒pTzl8u,所得质粒pPA57转化到青霉素酰化酶产生菌E.ColiD816,观察sphⅠ—PvuⅡ片段对染色体pac基因表达的影响。结果表明在sph Ⅰ—PvuⅡ片段内的调节基因反式调节pac基因表达。计算机分析表明在sph Ⅰ—PvuⅡ片段内有两个ORF是编码调节蛋白的可能候选者。Pac调节基因的精确定位正在进行中。  相似文献   

4.
高表达的基因工程菌大肠杆菌A56(pPA22)青霉素化酶基因表达对温度敏感。在37℃几乎不产生青霉素酰化酶,在28℃以下积累青霉素酰化酶,合成酶的最适温度为20—22℃,产量可达250u,100ml。当用DNA—RNA点滴杂交法定量分析RNA时,发现在37℃培养的细胞中不积累青霉素化酶mRNA,而22℃培养的细胞中相应mRNA的量是28℃培养的细胞中的5倍。同一质粒pPA22上的氯霉素乙酰转移酶的mRNA在三种温度培养的细胞中的。浓度相同。将37℃培养的细胞转移到22℃继续培养,当菌体不继续增殖时,细胞内仍无青霉素酰化酶及其mRNA的积累。上述结果表明温度在转录水平上专一地调控了青霉素酰化酶基因的表达,在37℃长时期培养的细胞中青霉素酰化酶基因被永久地关闭。  相似文献   

5.
选用带青霉素酰化酶基因的HindI—A片段或HindI—A及其邻接的HindI—B,c片段的4种不同的质粒pPA2,pPA4,pPA 5,pPA 6分别转化于4种大肠杆菌宿主A56,c600,HBl01,Mcl000得16种转化子并测这些转化子的青霉素酰化酶活力。结果表明:同一质粒在不同宿主中青霉素酰化酶基因表达程度有明显差别,其中以A56为最高,其次是c600和Mcl000,而以HBl01为最低。在所试验的4个宿主菌中青霉素酰化酶基因表达都具温度依赖性,而且HindI—B片段对表达有相同程度的促进作用。用DNA-RNA点滴杂交试验测定青霉素酰化酶的信使RNA的量,发现同一质粒在不同宿主中信使RNA量的差异与酶活力的差异相一致。上述结果表明宿主在转录水平上影响了青霉素酰化酶基因的表达。  相似文献   

6.
巨大芽孢杆菌青霉素G酰化酶基因的克隆和表达   总被引:3,自引:0,他引:3  
我们分离到了一株产生分泌型青霉素G酰化酶的巨大芽孢杆菌(Bacillus megateriumBM1)。用pBR322作载体,将该菌的青霉索G酰化酶基因克隆到大肠杆菌(Escherichia coliMcl061)中,得到含有9.9kb插人片段的重组质粒pBmPA4。分析了该质粒的限制酶酶切图谱,并经体外缺失获得含4.9kb插入片段的质粒pBmPA5。pBmPA4和pBmPA5在E·coliMcl061中均能表达,表达受苯乙酸诱导。  相似文献   

7.
用固定化青霉素酰化酶连续生产6-氨基青霉烷酸(简称6-APA)已有许多报道。近年来关于固定化微生物细胞的研究不断发展。Sato等曾用固定化的产青霉素酰化酶的细胞连续生产6-APA。我们用双功能试剂戊二醛固定化大肠杆菌AS 1.76的青霉素酰化酶,用来水解青霉素G生产6-APA。现将结果报告如下。  相似文献   

8.
为了定位青霉素G酰化酶的调节基因,从质粒Ppa6克隆了一系列青霉索G酰化酶基因(pac)的片段,将这些重组质粒转化E.coli D816,测定克隆片段对pac表达的影响。如果克隆片段含有完整的调节基因(pacR)。诱导剂不能使由高拷贝pacR表达的阻抑物失活,部分阻抑物结合pac操纵基困,阻碍RNA聚合酶对加pac的转录,因此pac的表达量降低。发酵结果表明,阻抑物可能是由pac结构基因内部的ORFⅡ编码的蛋白因子。  相似文献   

9.
固定化青霉素酰化酶的研究   总被引:11,自引:4,他引:7  
将巨大芽孢杆菌胞外青霉素酰化酶通过共价键连接到醋酸纤维素载体上,制成的固定化青霉素酰化酶的表观活力达2000 u/g左右(PDAB法)。水解lO%(w/v)的青霉素G钾盐落液,使用30批,保留活力70%以上。6-氨基青毒烷酸(6-APA)总收率平均达88.37%。固定化青霉素酰化酶水解青霉素G的最适pH为9.95,最适温度为55℃,表观米氏常数为1.093×10-2mol/L,在pH 5.8-10.7,温度45℃以下酶的活力稳定。  相似文献   

10.
青霉素在临床上的大量使用造成了细菌的耐药性增强,青霉素本身又具有不宜口服、过敏性强等缺点,人们正致力于研究有诸多优良特性的半合成青霉素。大肠杆菌青霉素酰化酶用于裂解青霉素生产6-氨基青霉烷酸(即6-APA,半合成青霉素的重要中间体),该酶的提取、纯化和固定化研究在半合成青霉素工业有重要的意义[1]。大肠杆菌青霉素酰化酶属胞内酶,文献报道多采用超声波法提取,该法得到的粗酶液比活低,一般要经过四、五步纯化才能得到较高比活[2,3,4]的酶液。采用渗透压冲击法提取青霉素酰化酶,得到的粗酶液比活高,只需经过硫酸铵沉淀一步纯化就…  相似文献   

11.
本文报道了从假单胞菌130菌株(Pseudomonas sp.130)染色体上克隆得到的6.8kb的GL-7-ACA酰化酶基因片段的限制酶谱,基因定位以及在不同的大肠杆菌基因启动子控制下酰化酶基因的表达水平。结果表明,所克隆的片段上,不存在EcoR Ⅰ、HindⅢ、claⅠI切点,分别具有一个HpaⅠ、两个xhoⅠ、三个BamHⅠI以及四个Pst I切点,同时初步确定了这些酶切位点之间的相对位置。经过一系列次级克隆研究,GL一7一AcA酰化酶基因已被定位在3.Okb的B 2-B3-Hpa Ⅰ片段上。实验比较了以pACYCl84、pDR540、pUCl9等为载体的次级克隆株(分别为pMR9、pMRl0和pMR11)在大肠杆菌中酰化酶基因的表达水平,测定数据表明tac启动子的启动活力比tet启动子强,即pMRl0的产酶量比pMR9高一倍,而当tac启动子前再串接一个lac启动子时(pMRll),产酶水平并不进一步提高。本文还对假单胞菌基因在大肠杆菌中的表达进行了讨论。  相似文献   

12.
颗粒状固定化青霉素酰化酶的研究   总被引:10,自引:0,他引:10  
韩辉  徐冠珠 《微生物学报》2001,41(2):204-208
将巨大芽孢杆菌 (Bacillusmegaterium)胞外青霉素酰化酶通过共价键结合到聚合物载体EupergitC颗粒环氧基团上 ,制成的颗粒状固定化青霉素酰化酶表现活力达 1 40 0 μ/g左右。固定化酶水解青霉素的最适 pH8 0 ,最适温度为 55℃。在pH6 0~ 8 5、温度低于 40℃时固定化酶活力稳定。在 pH8 0、温度 37℃时 ,固定化酶对青霉素的表现米氏常数Ka为 2×1 0 - 2 mol/L ;苯乙酸为竞争性抑制剂 ,抑制常数Kip为 2 8× 1 0 - 2 mol/L ;6 APA为非竞争性抑制剂 ,抑制常数Kia为 0 1 2 5mol/L。固定化酶水解青霉素 ,投料浓度为 8% ,在使用 2 0 0批后 ,保留活力 80 %左右 ,6 APA收率平均达 89 48%。  相似文献   

13.
采用青霉素梯度琼脂平皿筛选法,利用对青霉素G高抗性表型,专一筛选大肠杆菌青霉素酰化酶高产突变株。一次涂皿可淘汰绝大部分未突变株。我们从青霉素G梯度琼脂平皿上获得528株,从中得到32株产酰化酶活性高于出发菌株的正突变株,正突变率为6.06%,最高突变幅度为96.6%。  相似文献   

14.
为筛选较优的产青霉素酰化酶的菌种,我们从9个属的232株纽菌中选出了19株产青霉素酰化酶的大肠杆菌,其中,AS 1.76和E 110为最好。还对大肠杆菌AS 1.76的产酶条件进行了研究。结果表明,最适的培养基成分是(%):蛋白胨l,苯乙酸0.2,玉米浆0.3,氯化钠0.5;在250毫升的三角瓶中装30毫升培养基时,通气量正合适:培养基的初始pH以7.0为佳;培养时间15小时。在未加玉米浆的培养基中,少量的Fe2+(5馓克/毫升)对酶形成有刺激作用,过量的Fe2+(大于10教克/毫升)是不利的;在培养基中添加0.3%的玉米浆能降低Fe2+对酶形成毒害作用。  相似文献   

15.
大肠杆菌青霉素酰化酶的提纯及其性质的研究   总被引:2,自引:1,他引:1  
大肠杆菌(Escherichia coli) AS 1.70发酵液经有机溶剂处理,硫酸铵分级,再用聚丙烯酰胺垂直板凝胶电泳进行纯化,得到了聚丙烯酰胺凝肢电泳均一的青霉素酰化酶纯品。纯酶作用的最适温度为45—55℃,最适pH为7.0—7.7,在无NIPAB存在下,纯酶在45℃以下稳定,但在55℃保温一小时,酶活力残存33.58%,纯酶在pH5.0—8.0稳定。酶作用于重排酸的米氏常数为3.33×10-2g/ml。Ag+对酶有抑制作用。用聚丙烯酰胺薄层凝胶等电聚焦测定酶的等电点(pI)为6.7—6.8,用SDS凝胶电泳测酶的亚基分子量分别为14300和58900。纯酶具有水解苯甘氨酸甲酯盐酸盐的作用,反应两小时产生12.74mM苯甘氨酸。  相似文献   

16.
刘建国  杨秀琴  吴径才   《微生物学通报》1989,16(5):298-299,281
采用青霉素梯度琼脂平皿筛选法,利用对青霉素G高抗性表型,专一筛选大肠杆菌青毒素酰化酶高产突变株。一次涂皿可淘汰绝大部分未突变株。我们从青霉素G梯度琼脂平皿上获得528株,从中得到32株产酰化酶活性高于出发菌株的正突变株,正突变率为6.06%,最高突变幅度为96.6%。  相似文献   

17.
运用动力学方法研究了微波对青霉素酰化酶(pK1和pK2分别为5.69-6.06和11.56)催化反应性能的影响。结果显示:使用微波解冻档对青霉素酰化酶进行一定时间的预处理后,能够加速酶的水解反应。酶液的最适处理时间为15 s,微波处理后,酶的最适温度为从原来的37℃上升到40℃,操作稳定性基本不变。对最适微波条件处理后的青霉素酰化酶pH值依赖性催化反应进行研究,从logVm和log(Vm/Km)与pH值关系曲线计算得到该酶的pK1和pK2分别为5.66-6.55和11.05。  相似文献   

18.
固定化在多孔玻璃上的青霉素酰化酶性质   总被引:1,自引:0,他引:1  
从大肠杆菌As 1.76提取青霉素酰化酶,经纯化,用戊二醛圈定在氯烷基硅烷化多孔玻璃上。初步摸索了固定化条件。固定化酶的米氏常数为7.7 x 10-4M,比自然酶大10倍,但竞争性抑制剂苯乙酸对固定化酶和自然酶的抑制常数基本相同,固定化酶的最大反应速度为5.8×10-2M/min,比自然酶大2.5倍,水解NIPAB的最适pH为7.O,比自然酶低1个pH单位,最适反应温度比自然酶低i0℃,固定化酶在pH 5.8—8.0之间较稳定,较自然酶的范围略窄;固定化酶在40℃以下稳定,而自然酶在45℃以下稳定。  相似文献   

19.
大肠杆菌AS1.76青霉素G酰化酶基因的克隆和定位   总被引:3,自引:0,他引:3  
通过DNA体外重组,由E. colt AS 1.76菌株染色体DNA获得了青霉素G酰化酶基因克隆。测定了pPGA20质柱的限制性内切酶图谱,并构建了若干个pPGA2(/的变种。这些变种的酶活力及其酶切位点关系的分析结果表明,青霉素G酰化酶基因定位在 HindIII 和Sinai酶切位点之间小于2.8Kb DNA片段上。  相似文献   

20.
胞外青霉素酰化酶产生菌的选育   总被引:6,自引:6,他引:0  
利用纸片显色方法,从土壤甲诀速筛选出98株产胞外青霉素酰化酶的菌种,经复筛其中10株酶活力较高,经鉴定均属于巨大芽孢杆菌。经单株分离得46号菌,用这株菌进行了产酶条件的研究,在最适产酶条件下,酶话力比开始提高了3.6倍。在此基础上又进行了物理化学因素处理,得突变株UL-81,酶活力达720u/1 Ooml发酵液。对原株和突变株进行比较,发现UL-81菌落、细胞形态、诱导剂苯乙酸用量及添加时间等明显不同于原株。在500L罐发酵酶活达8 20u/1OOml发酵液,为开始酶活的16倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号